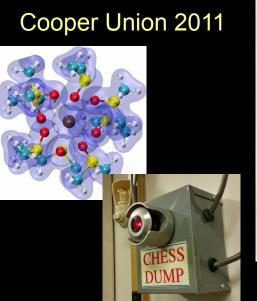
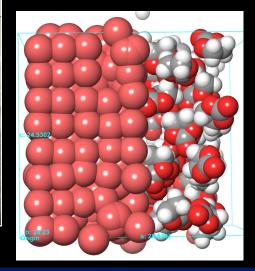

The Cooper Union for the Advancement of Science and Art

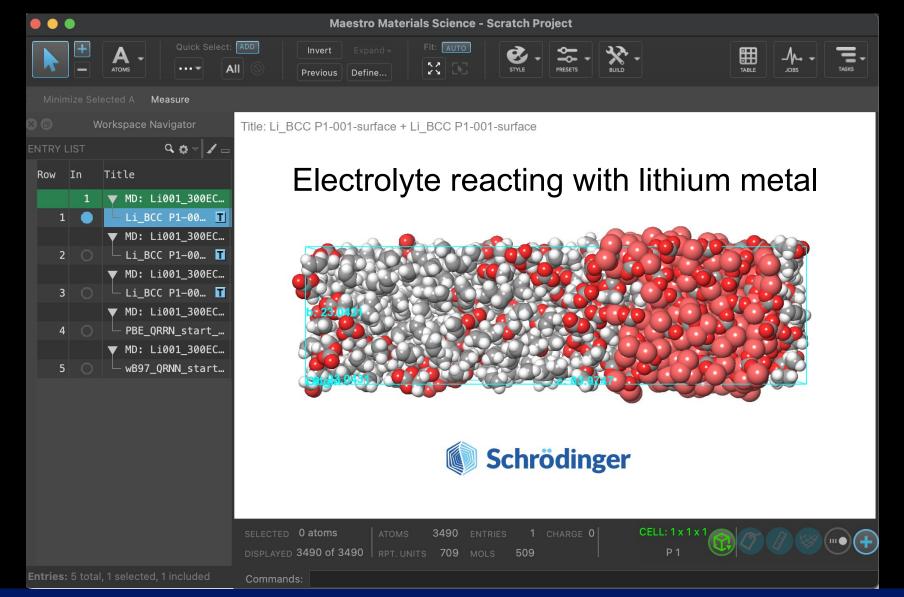


ChE352 Numerical Techniques for Chemical Engineers Professor Stevenson

Lecture 1

Professor Stevenson





Cornell 2016

My day job: Schrödinger, Inc

Make a card to introduce yourself

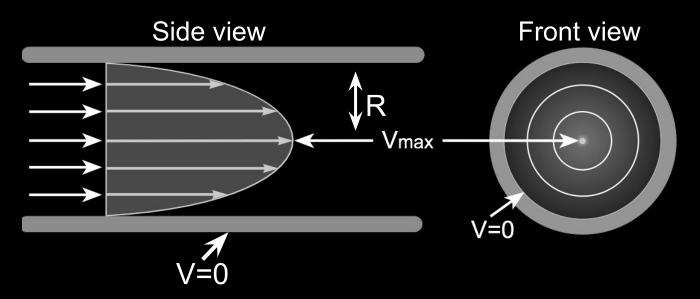
- What is your name?
- What are your pronouns?
- Rate your comfort with coding (1-10)
- Topic you haven't learned yet as an engineer, but want to?

James Stevenson he/him Coding comfort: 10/10 I want to learn more about biochemistry

Things I Would Like From You

- 1. Bring problems to me ASAP
 - Especially if you feel unprepared
 - I might assume pre-reqs wrong
- 2. Remind me about jargon
 - Some rare terms are common in my work
 - Raise your hand when I use them in class
- 3. Be honest

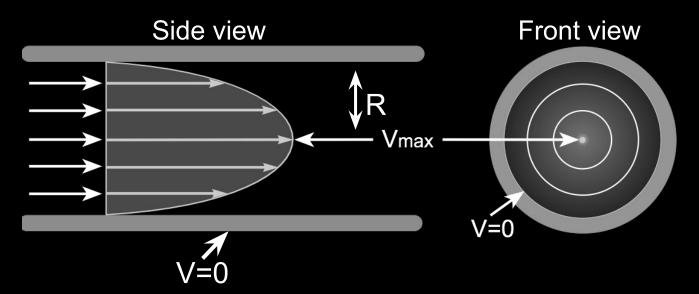
The Cooper Union for the Advancement of Science and Art


In 16 months, you will have a degree that says "Chemical Engineering" on it

1. What does that mean?

2. What should you be able to do?

3. How do numerical methods & process simulation fit in?


A familiar kind of problem

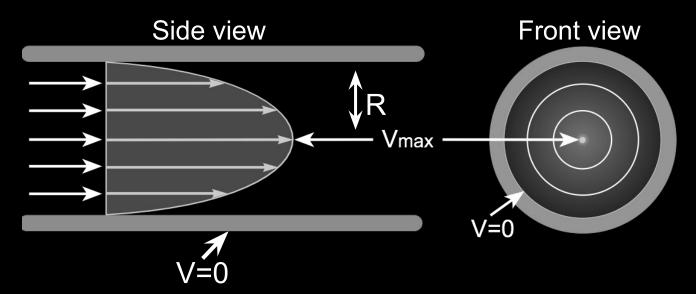
What is the velocity profile v(r) of a viscous fluid flowing in a pipe?

Assume radially symmetric, v=0 at the edges, v_{max} is at center

A familiar kind of problem

Differential equation

$$\frac{d^2v}{dr^2} + \frac{1}{r}\frac{dv}{dr} = -\frac{1}{\eta}\frac{\Delta P}{\Delta z}$$


General analytic solution

$$V = A + Br^2$$

Solve for A & B

Boundary conditions

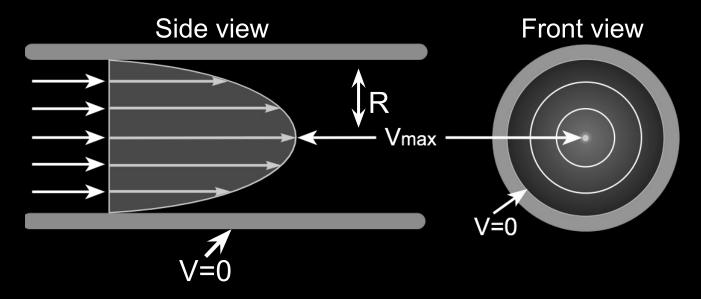
$$v(R) = 0, v(0) = v_{max}$$

A familiar kind of problem

Differential equation

$$\frac{d^2v}{dr^2} + \frac{1}{r}\frac{dv}{dr} = -\frac{1}{\eta}\frac{\Delta P}{\Delta z}$$

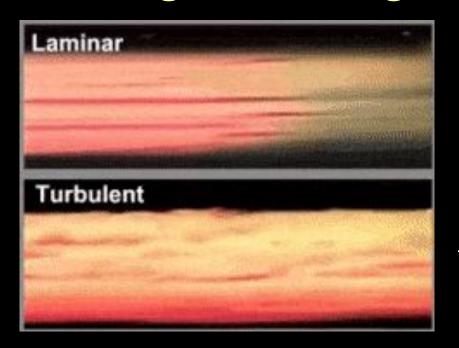
General analytic solution


$$V = A + Br^2$$

Solve for A & B

Boundary conditions

$$v(R) = 0, v(0) = v_{max}$$


$$v = v_{max} \left(1 - \frac{r^2}{R^2} \right)$$

Slight change to the problem

What is the velocity profile v(r) of a **low-viscosity** fluid flowing in a pipe?

Slight change to the problem

$$\frac{d^2v}{dr^2} + \frac{1}{r}\frac{dv}{dr} = -\frac{1}{\eta}\frac{\Delta P}{\Delta z}$$

$$\frac{d\mathbf{v}}{dt} + \mathbf{v} \cdot \nabla \mathbf{v} + \frac{\nabla P}{\rho} = 0$$

No general analytic solution exists outside of the simple laminar flow case

The Cooper Union for the Advancement of Science and Art

Why not use existing software?

- Whenever possible, you should!
- But...

Why not use existing software?

- Whenever possible, you should!
- But...
- Numerical methods have hidden assumptions
- All software has unknown bugs, especially technical software (narrow user base)
- Software makers are often more in demand than software users

What to expect from this class

- ~Weekly homework assignments
- One midterm exam
- One final project

Homework	Midterm	Final Project	Class participation
30%	30%	30%	10%

- No more code than we need (but still a lot)
- Tools: Python language, Kaggle & Google Colab notebooks

Class materials

- Most topics are in your textbooks
- Topics that are part of the course, but NOT in the textbooks, are labeled "Supp:" on the syllabus
 - I will give you supplemental sources as needed
- Bring a laptop or tablet to class which you are comfortable using to type code
- If you have issues getting a textbook or laptop to use, let me know ASAP and I will help

The Cooper Union for the Advancement of Science and Art

Office Hours

Wednesdays after class, 5:50pm - 6:20pm Or by appointment (message me on Teams) Email: james.stevenson@cooper.edu

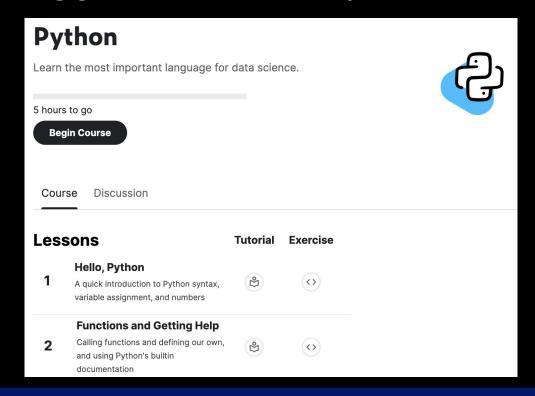
Coding environments

- Behind the scenes: in previous years, this class has used a Python environment called Spyder
 - Spyder runs on your laptop
 - Each install is a little different
 - Usually that doesn't matter, but in this class we deal with error propagation

Previous software experience

Show of hands:

- Who has used Google Colab?
- Who has used Kaggle?
- Who has used Github?
- Who has used Matlab (effectively)?


Any other software experience that might be common among Cooper ChemEs?

Coding with online notebooks

- Google Colab & Kaggle are based on a popular Python environment called "Jupyter notebooks"
- Can write plain code, or embed chunks of runnable code (called "cells") inside an interactive document
- Code runs on the remote server, so everyone's environment can be identical
 - Used for machine learning competitions
 - Also great for this kind of class

Set up Kaggle

- Make a free account at kaggle.com
- Send me your Kaggle handle via Teams
 - Mine is allaboutchemistry
- Go to kaggle.com/learn/python

Python warmup

- We need a baseline of Python skills for the remainder of the course
- I will provide class time and help to work on kaggle.com/learn/python - today, next class, and at office hours
- Graded by automated tests: you need all right answers, but the only penalty is to keep trying
- Any parts you don't finish in class will become HW #1