
The Cooper Union for the Advancement of Science and Art

ChE352
Numerical Techniques for Chemical Engineers

Professor Stevenson

Lecture 3

The Cooper Union for the Advancement of Science and Art

Numpy arrays
import numpy as np

x = np.array([1, 4, 3])

y = np.array([[1, 4, 3], [9, 2, 7]])

print('x.shape:', x.shape, ' x.size:', x.size)

print('y.shape:', y.shape, ' y.size:', y.size)

x.shape: (3,) x.size: 3
y.shape: (2, 3) y.size: 6

tuple of ints int

np.array of ints

The Cooper Union for the Advancement of Science and Art

Floating point numbers

• np.float32 holds ~7 decimal digits
• np.float64 holds ~16 decimal digits
• Not every real number can be represented
• Too big = overflow, too small = underflow
• Only binary fractions (no exact 1/3, 1/5, etc)

• Computer math is almost always floating point
• Like scientific notation with powers of 2 only

The Cooper Union for the Advancement of Science and Art

print('Using f-strings, print 20 digits for each number')

for float_type in [np.float64, np.float32, np.float16]:

 x1 = float_type(1)

 print(f'{float_type} 1.0 is really {x1:.20f}')

 x2 = float_type(0.1)

 print(f'{float_type} 0.1 is really {x2:.20f}')

How does this code work?

What do you expect it to print?

The Cooper Union for the Advancement of Science and Art

print('Using f-strings, print 20 digits for each number')

for float_type in [np.float64, np.float32, np.float16]:

 x1 = float_type(1)

 print(f'{float_type} 1.0 is really {x1:.20f}')

 x2 = float_type(0.1)

 print(f'{float_type} 0.1 is really {x2:.20f}')

Using f-strings, print 20 digits for each number

float64 1.0 is really 1.00000000000000000000

float64 0.1 is really 0.10000000000000000555

float32 1.0 is really 1.00000000000000000000

float32 0.1 is really 0.10000000149011611938

float16 1.0 is really 1.00000000000000000000

float16 0.1 is really 0.09997558593750000000

The Cooper Union for the Advancement of Science and Art

Floating-point operations (flops)
• A computer can do billions/second (Gflops)

○ This is why we tolerate floating point issues
• Floating point arithmetic has round-off error
• Swamping (A+B ≈ A) or Cancelation (A–B ≈ 0)

are the most common types of round-off error

What values of A, B might cause swamping?
What values might cause cancelation?

Try it in Google Colab!

The Cooper Union for the Advancement of Science and Art

Noticing round-off error
1. Avoid subtracting very similar numbers

Why?
2. Avoid adding big + small or dividing big/small

3. Avoid multiplying big*big or small*small

4. Check your answer if possible

5. Test for “nearness” instead of exact equality

The Cooper Union for the Advancement of Science and Art

Noticing round-off error
1. Avoid subtracting very similar numbers

○ sqrt(x + 1) - sqrt(x) = 1 / (sqrt(x + 1) + sqrt(x))
2. Avoid adding big + small or dividing big/small

○ big / small ≅ big / (small + epsilon)
3. Avoid multiplying big*big or small*small

○ log(A*A) = 2 log(A)
4. Test your answer if possible

○ if solving for f(x) = 0, check f(x)
5. Test for close instead of exact equality

○ abs(f(x)) < 0.001, not f(x) == 0.0

The Cooper Union for the Advancement of Science and Art

Dealing with round-off error
Try an expression analyzer such as

https://herbie.uwplse.org/demo/
Improves accuracy by testing alternate

expressions over a random sample of inputs

Can output math
or code, including

Python

Plots error (in
bits) vs input,

so you can see
if it matters

If error is small
in your domain,

you're fine
either way

https://herbie.uwplse.org/demo/

The Cooper Union for the Advancement of Science and Art

Which float do you get by default?
x = 0.1 # default Python float

print(f'{type(x).__name__} 0.1 is really {x:.20f}')

xx = np.array([0.1]) # default Numpy array

print(f'{type(xx[0]).__name__} 0.1 is really {xx[0]:.20f}')

How does this code work?

What do you expect it to print?

The Cooper Union for the Advancement of Science and Art

Which float do you get by default?
x = 0.1 # default Python float

print(f'{type(x).__name__} 0.1 is really {x:.20f}')

xx = np.array([0.1]) # default Numpy array

print(f'{type(xx[0]).__name__} 0.1 is really {xx[0]:.20f}')

 float 0.1 is really 0.10000000000000000555

 float64 0.1 is really 0.10000000000000000555

Python and Numpy both use float64 by default
(most precise float type implemented in hardware,
thus most precision available while keeping speed)

The Cooper Union for the Advancement of Science and Art

NumPy array examples
Try the following exercises from PNM 2.8, 17-21:

Next reading: Taylor's Theorem (PNM 18.3),
Real Analysis (F&B 1.2),

