The Cooper Union for the Advancement of Science and Art

ChE352
Numerical Techniques for Chemical Engineers

Professor Stevenson

Lecture 3



The Cooper Union for the Advancement of Science and Art

Numpy arrays

import numpy as np np.array of ints

X = np.array([1, 4, 3])‘k//' k//

y = np.array([[l, 4, 3], [9, 2, 7]])

print('x.shape:', x.shape, X.size:', x.size)

print('y.shape:', y.shape, y.size:', y.size)

X.shape: (3,) x.size: 3

y.shape: (2, 3) y.size: 6

AN

tuple of ints int



The Cooper Union for the Advancement of Science and Art

Floating point numbers

« Computer math is almost always floating point
* Like scientific notation with powers of 2 only

sign exponent (8 bits) fraction (23 bits)

= 0.15625

* np.float32 holds ~7 decimal digits

» np.float64 holds ~16 decimal digits

* Not every real number can be represented
 Too big = overflow, too small = underflow

* Only binary fractions (no exact 1/3, 1/5, etc)



The Cooper Union for the Advancement of Science and Art

print('Using f-strings, print 20 digits for each number')
for float type in [np.float64, np.float32, np.floatl6]:
x1 = float type(1)
print(f'{float _type} 1.0 is really {x1:.20f}")
x2 = float type(0.1)
print(f'{float type} 0.1 is really {x2:.20f}")

How does this code work?

What do you expect it to print?



The Cooper Union for the Advancement of Science and Art

print('Using f-strings, print 20 digits for each number')
for float type in [np.float64, np.float32, np.floatl6]:
x1 = float type(1)
print(f'{float _type} 1.0 is really {x1:.20f}")
x2 = float type(0.1)
print(f'{float type} 0.1 is really {x2:.20f}")

Using f-strings, print 20 digits for each number

float64 1.0 is really 1.00000000000000000000
float64 0.1 is really 0.10000000000000000555
float32 1.0 is really 1.00000000000000000000
float32 0.1 is really 0.10000000149011611938
floatl6 1.0 is really 1.00000000000000000000
floatl6 0.1 is really 0.09997558593750000000



The Cooper Union for the Advancement of Science and Art
Floating-point operations (flops)

* A computer can do billions/second (Gflops)
o This is why we tolerate floating point issues
* Floating point arithmetic has round-off error
« Swamping (A+B = A) or Cancelation (A-B = 0)
are the most common types of round-off error

What values of A, B might cause swamping?
What values might cause cancelation?
Try it in Google Colab!



The Cooper Union for the Advancement of Science and Art

Noticing round-off error

Avoid subtracting very similar numbers
Why?
Avoid adding big + small or dividing big/small

Avoid multiplying big*big or small*small
Check your answer if possible

Test for “nearness” instead of exact equality



1.

5.

The Cooper Union for the Advancement of Science and Art

Noticing round-off error
Avoid subtracting very similar numbers
o sqrt(x + 1) -sqrt(x) =1/ (sqrt(x + 1) + sqrt(x))
Avoid adding big + small or dividing big/small
o big / small = big / (small + epsilon)
Avoid multiplying big*big or small*small
o log(A*A) =2 log(A)
Test your answer if possible
o If solving for f(x) = 0, check f(x)
Test for close instead of exact equality
o abs(f(x)) < 0.001, not f(x) == 0.0



The Cooper Union for the Advancement of Science and Art

Dealing with round-off error
Try an expression analyzer such as

Improves accuracy by testing alternate
expressions over a random sample of inputs

WERB/. VeFi-va '

4 Can output math
®

1 or code, including
Herbie web demo

Vitz+4/z Python

« Plots error (in | If error is small
" bits) vs input, | in your domain,

Write a formula below, and Herbie will try to improve it. Enter approximate ranges for inputs
Show an example | Use FPCore i f .
.- SO yOU can see you're fine

if it matters either way

sqrt(x + 1) - sqrt(x)
x: 0 to 1.79e308

| Improve with Herbie


https://herbie.uwplse.org/demo/

The Cooper Union for the Advancement of Science and Art

Which float do you get by default?

X = 0.1 # default Python float

print(f'{type(x). name__} 0.1 is really {x:.20f}")

XX = np.array([0.1]) # default Numpy array
print(f'{type(xx[0]). name_ } 0.1 is really {xx[0]:.20f}")

How does this code work?

What do you expect it to print?



The Cooper Union for the Advancement of Science and Art

Which float do you get by default?

X = 0.1 # default Python float

print(f'{type(x). name__} 0.1 is really {x:.20f}")

XX = np.array([0.1]) # default Numpy array
print(f'{type(xx[0]). name_ } 0.1 is really {xx[0]:.20f}")

float 0.1 is really 0.10000000000000000555
float64 0.1 is really 0.10000000000000000555

Python and Numpy both use float64 by default
(most precise float type implemented in hardware,
thus most precision available while keeping speed)



The Cooper Union for the Advancement of Science and Art

NumPy array examples
Try the following exercises from PNM 2.8, 17-21:

17. Generate an array with size 100 evenly spaced between -10 to 10 using

linspace function in Numpy.

18. Let array_abe anarray[-1,0, 1, 2,0, 3]. Write a command that will return

an array consisting of all the elements of array_a that are larger than zero.

Hint: Use logical expression as the index of the array.

19.Createanarray y =

20. Create a zero array with size (2, 4).

(3 5 3)
2 2 5

3 8 9/

and calculate the transpose of the array.

21. Change the 2nd column in the above array to 1.

Next reading: Taylor's Theorem (PNM 18.3),
Real Analysis (F&B 1.2),



