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Root finding
• Origin: Egypt, ~1700 B.C.E.
• Solve any algebraic 

equation, even equations 
with no analytic solutions 
(which is most of them)

• Common in ChemE
• We will learn two methods:
1. Bisection (simple, safe)
2. Newton-Raphson (fast)

Modern 
root-finding

Ancient 
root-finding
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Example: Fluid Mechanics

Given the Reynolds number Re, how 
would you find the friction factor𝒇?

Churchill and Zajic (2002): 
equation for friction factor 𝒇 
in a pipe as a function of 

Reynolds number Re
Polynomial + log: 

no analytic 
solution
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Finding the Friction Factor from Re

First we rearrange the Churchill-Zajic equation:

Why is this form easier?
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Does a Root Exist?

● We want to find p 
such that f(p) = 0

● Don't try to find p 
if it doesn’t exist!

Why f(p) = 0, not the more general f(p) = K?
How do we know there will be a root p?

How many values of p might exist?
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Intermediate Value Theorem
Existence of an intermediate value:

Plug in K = 0 and c = p (root finding):

(Note that we can flip a and b; IVT is still valid)
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We Must Prove That a Root Exists

1. Is f(x) continuous for the Churchill-Zajic eqn.?
2. Can our bounds, a & b, be negative?
3. Should f(a) or f(b) ever be equal to zero?
4. Is f(a) always less than f(b)?
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Activity: Existence of a Root
For the Churchill-Zajic equation below:

1. Rewrite the function in the form f(y) = 0 with    
y = √(2/x), and Re = 20000

2. Write a Python function that returns f(y)
3. Find values a, b such that f is continuous on 

[a, b] and a root of f(y) exists between a & b



The Cooper Union for the Advancement of Science and Art

Answer: Existence of a Root
# Churchill-Zajic for Re = 20,000

# note, continuous for all positive values of y

def churchill_zajic(y):

   Re = 2e4

   return (3.2 - 227 * y / (0.5 * Re) +

           2500 * (y / (0.5 * Re))**2 +

           1 / 0.436 * np.log(0.5 * Re / y) - y)

Can we make this long equation nicer?
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Answer: Existence of a Root
# Churchill-Zajic for Re = 20,000

# note, continuous for all positive values of y

def churchill_zajic(y):

   Re = 2e4

   yr = y / (0.5 * Re)

   return (3.2 - 227 * yr +

           2500 * yr**2 +

           1 / 0.436 * np.log(1 / yr) - y)

How is this form 
of the equation 
mathematically 

nicer?
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Answer: Existence of a Root
# test for roots of f from A to B

def find_root_bounds(f, A, B, step):

   for a in np.arange(A, B, step):

       for b in np.arange(a + step, B, step):

           if np.sign(f(a)) != np.sign(f(b)):

               return a, b

# we know churchill_zajic(y) is continuous for y > 0

bounds = find_root_bounds(churchill_zajic, 1, 100, 1)

print(bounds)  # gives 1, 18

print([churchill_zajic(y) for y in bounds])

How does this 
prove existence 

of a root?
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Bisection for Root Finding
The bisection method finds p* such that 
f(p*) ≈ 0, on the interval [a, b], in this way:

1. Prove there is a root on the interval [a, b]
2. Cut the interval in half (aka bisect it)
3. Pick the half-interval that contains the root
4. If not done, go back to step 3

How do you pick the half with the root?
When are you done?
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Bisection in pictures

Interval 1 (100%)

Interval 2 (50%)

Interval 3 (25%)

Interval 4 (12.5%)
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Bisection in pseudocode
Inputs: function f, scalar a, and scalar b
1. If sign(f(a)) == sign(f(b)), raise an error
2. Set p = (a + b) / 2
3. If sign(f(a)) == sign(f(p)), set a = p, else b = p
4. If conditions are met, STOP
5. Go to Step 2
Outputs: p, f(p); or error if sign(f(a)) == sign(f(b))

Stopping conditions: f(p) < 𝜀, or |a-b| < 𝜀, 
or |a-b| / |p|  < 𝜀, or simply too many iterations



The Cooper Union for the Advancement of Science and Art

Convergence of Bisection

Each step, we reduce the uncertainty 
by half: ratio of error between adjacent 
steps is approximately a constant 0.5.

Not bad, but we can do better.

Is there more information about f(x) we 
can use to make a better method?
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import time

print('Lecture paused')
time.sleep(300)
print('More information')
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Use the slope f’(x)
How can we find a root using the following?
• Starting point x, y = p0, f(p0)
• Desired y = f(p) = 0
• Slope at p0 = f’(p0) ← new information
Remember first-order Taylor series, any 
function can be approximated as a line:

By plugging in f(p1) = 0, we can solve for p1
and get a very nice estimate of p
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Activity: solve for p1

Plug in f(p1) = 0
Solve for p1

How can we find a root using the following?
• Starting point x, y = p0, f(p0)
• Desired y = f(p) = 0
• Slope at p0 = f’(p0) ← new information
Remember first-order Taylor series, any 
function can be approximated as a line:
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Solve for p1

How can we find a root using the following?
• Starting point x, y = p0, f(p0)
• Desired y = f(p) = 0
• Slope at p0 = f’(p0) ← new information
Remember first-order Taylor series, any 
function can be approximated as a line:
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German, I guess

Newton's Method
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Newton's Method

● Using the line defined by p0, 
f(p0), f’(p0) to calculate your next 
guess p1 is called Newton’s 
Method or Newton-Raphson

● Converges faster than Bisection
● Can fail if you’re unlucky
● How can it fail?
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Newton-Raphson failure
If f’(p) ≈ 0, f(p) / f’(p) 
will be nonsense

How could we 
address these 

problems?

If p is near a max or min, 
not a root, we can get stuck



The Cooper Union for the Advancement of Science and Art

Newton-Raphson failure

Use limited step size 
(“trust radius”)

After N iterations, try again with a new guess.
Can use bisection, finish with Newton (“polishing”)

Use bounds pmin, pmaxIf p is near a max or min, 
not a root, we can get stuck

If f’(p) ≈ 0, f(p) / f’(p) 
will be nonsense
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Quadratic vs Linear Convergence
An algorithm/sequence converges linearly if, for large n:

And quadratically if:

• Newton's Method converges quadratically 
(if at all), bisection linearly (every time)

• See F&B page 51 for more details

The ratio errorn+1 / errorn 
is bounded by a constant K 

(for bisection, K = 0.5)

The ratio errorn+1 / errorn
2

is bounded by a constant K
(drop in error accelerates)
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Bisection vs Newton-Raphson
Bisection Newton

Convergence? 

Always 
converges?

Special 
conditions?

Good when?
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Bisection vs Newton-Raphson
Bisection Newton

Convergence? Linear Quadratic

Always 
converges? Yes No, if bad p0 or if 

we hit f’(pn) ≈ 0

Special 
conditions?

Need the 
bounds a, b

Need a guess p0, 
need to have f’(x)

Good when? We need 
stability

We need
accuracy & speed
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def f_df(x):  # example function: f(x) = x**2 - 6

   return x**2 - 6, 2 * x  # return f(x) and f'(x)

rel_x_tolerance = 1e-4

n_max = 5

p0 = 1.0  # very simple guess

for i in range(n_max):

   f_p0, df_p0 = f_df(p0)  # get f(x) and f'(x)

   p = p0 - f_p0 / df_p0  # get new point p

   if abs((p - p0) / p) < rel_x_tolerance:

        break

   p0 = p  # try again from new point p

print(f'p**2 = {p**2}')  # p**2 = 6.00000000002

Code for Newton-Raphson
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Activity: Newton-Raphson √6

Use Newton's Method to find sqrt(6) from an 
initial guess of p0 = 1:

At each step, record your guess pn and your 
relative error bound abs((pn-1 - pn) / pn). Stop 
when the relative error bound is under 0.01.
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Answer: Newton-Raphson by Hand
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Root Finding Implementations

1. For linear or quadratic, solve analytically
2. For polynomials of order > 2, use “roots” in 

numpy: numpy.roots(P) gives all the roots
3. For general nonlinear equations, use 

scipy.optimize: define a function f, then 
optimize.newton(f, guess) gives one root 
near your initial guess “guess”
○ What might scipy.optimize.newton do if 

function f doesn’t return its derivative f’?
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Summary and Problems
● Open Python Numerical Methods, go to 

Chapter 19.6: Summary and Problems
● Solve the problem 

beginning "Consider 
the problem of 
building a pipeline..." 

● Note, same with an 
offshore wind turbine

All reading for next week: linear, spline, & Lagrange 
interpolation (PNM 17.1-4), numerical derivatives 

(PNM 20.1-2) & integrals (PNM 21.1-3)


