
The Cooper Union for the Advancement of Science and Art

ChE352
Numerical Techniques for Chemical Engineers

Professor Stevenson

Lecture 6

The Cooper Union for the Advancement of Science and Art

Root finding
• Origin: Egypt, ~1700 B.C.E.
• Solve any algebraic

equation, even equations
with no analytic solutions
(which is most of them)

• Common in ChemE
• We will learn two methods:
1. Bisection (simple, safe)
2. Newton-Raphson (fast)

Modern
root-finding

Ancient
root-finding

The Cooper Union for the Advancement of Science and Art

Example: Fluid Mechanics

Given the Reynolds number Re, how
would you find the friction factor𝒇?

Churchill and Zajic (2002):
equation for friction factor 𝒇
in a pipe as a function of

Reynolds number Re
Polynomial + log:

no analytic
solution

The Cooper Union for the Advancement of Science and Art

Finding the Friction Factor from Re

First we rearrange the Churchill-Zajic equation:

Why is this form easier?

The Cooper Union for the Advancement of Science and Art

Does a Root Exist?

● We want to find p
such that f(p) = 0

● Don't try to find p
if it doesn’t exist!

Why f(p) = 0, not the more general f(p) = K?
How do we know there will be a root p?

How many values of p might exist?

The Cooper Union for the Advancement of Science and Art

Intermediate Value Theorem
Existence of an intermediate value:

Plug in K = 0 and c = p (root finding):

(Note that we can flip a and b; IVT is still valid)

The Cooper Union for the Advancement of Science and Art

We Must Prove That a Root Exists

1. Is f(x) continuous for the Churchill-Zajic eqn.?
2. Can our bounds, a & b, be negative?
3. Should f(a) or f(b) ever be equal to zero?
4. Is f(a) always less than f(b)?

The Cooper Union for the Advancement of Science and Art

Activity: Existence of a Root
For the Churchill-Zajic equation below:

1. Rewrite the function in the form f(y) = 0 with
y = √(2/x), and Re = 20000

2. Write a Python function that returns f(y)
3. Find values a, b such that f is continuous on

[a, b] and a root of f(y) exists between a & b

The Cooper Union for the Advancement of Science and Art

Answer: Existence of a Root
Churchill-Zajic for Re = 20,000

note, continuous for all positive values of y

def churchill_zajic(y):

 Re = 2e4

 return (3.2 - 227 * y / (0.5 * Re) +

 2500 * (y / (0.5 * Re))**2 +

 1 / 0.436 * np.log(0.5 * Re / y) - y)

Can we make this long equation nicer?

The Cooper Union for the Advancement of Science and Art

Answer: Existence of a Root
Churchill-Zajic for Re = 20,000

note, continuous for all positive values of y

def churchill_zajic(y):

 Re = 2e4

 yr = y / (0.5 * Re)

 return (3.2 - 227 * yr +

 2500 * yr**2 +

 1 / 0.436 * np.log(1 / yr) - y)

How is this form
of the equation
mathematically

nicer?

The Cooper Union for the Advancement of Science and Art

Answer: Existence of a Root
test for roots of f from A to B

def find_root_bounds(f, A, B, step):

 for a in np.arange(A, B, step):

 for b in np.arange(a + step, B, step):

 if np.sign(f(a)) != np.sign(f(b)):

 return a, b

we know churchill_zajic(y) is continuous for y > 0

bounds = find_root_bounds(churchill_zajic, 1, 100, 1)

print(bounds) # gives 1, 18

print([churchill_zajic(y) for y in bounds])

How does this
prove existence

of a root?

The Cooper Union for the Advancement of Science and Art

Bisection for Root Finding
The bisection method finds p* such that
f(p*) ≈ 0, on the interval [a, b], in this way:

1. Prove there is a root on the interval [a, b]
2. Cut the interval in half (aka bisect it)
3. Pick the half-interval that contains the root
4. If not done, go back to step 3

How do you pick the half with the root?
When are you done?

The Cooper Union for the Advancement of Science and Art

Bisection in pictures

Interval 1 (100%)

Interval 2 (50%)

Interval 3 (25%)

Interval 4 (12.5%)

The Cooper Union for the Advancement of Science and Art

Bisection in pseudocode
Inputs: function f, scalar a, and scalar b
1. If sign(f(a)) == sign(f(b)), raise an error
2. Set p = (a + b) / 2
3. If sign(f(a)) == sign(f(p)), set a = p, else b = p
4. If conditions are met, STOP
5. Go to Step 2
Outputs: p, f(p); or error if sign(f(a)) == sign(f(b))

Stopping conditions: f(p) < 𝜀, or |a-b| < 𝜀,
or |a-b| / |p| < 𝜀, or simply too many iterations

The Cooper Union for the Advancement of Science and Art

Convergence of Bisection

Each step, we reduce the uncertainty
by half: ratio of error between adjacent
steps is approximately a constant 0.5.

Not bad, but we can do better.

Is there more information about f(x) we
can use to make a better method?

The Cooper Union for the Advancement of Science and Art

import time

print('Lecture paused')
time.sleep(300)
print('More information')

The Cooper Union for the Advancement of Science and Art

Use the slope f’(x)
How can we find a root using the following?
• Starting point x, y = p0, f(p0)
• Desired y = f(p) = 0
• Slope at p0 = f’(p0) ← new information
Remember first-order Taylor series, any
function can be approximated as a line:

By plugging in f(p1) = 0, we can solve for p1
and get a very nice estimate of p

The Cooper Union for the Advancement of Science and Art

Activity: solve for p1

Plug in f(p1) = 0
Solve for p1

How can we find a root using the following?
• Starting point x, y = p0, f(p0)
• Desired y = f(p) = 0
• Slope at p0 = f’(p0) ← new information
Remember first-order Taylor series, any
function can be approximated as a line:

The Cooper Union for the Advancement of Science and Art

Solve for p1

How can we find a root using the following?
• Starting point x, y = p0, f(p0)
• Desired y = f(p) = 0
• Slope at p0 = f’(p0) ← new information
Remember first-order Taylor series, any
function can be approximated as a line:

The Cooper Union for the Advancement of Science and Art

German, I guess

Newton's Method

The Cooper Union for the Advancement of Science and Art

Newton's Method

● Using the line defined by p0,
f(p0), f’(p0) to calculate your next
guess p1 is called Newton’s
Method or Newton-Raphson

● Converges faster than Bisection
● Can fail if you’re unlucky
● How can it fail?

The Cooper Union for the Advancement of Science and Art

Newton-Raphson failure
If f’(p) ≈ 0, f(p) / f’(p)
will be nonsense

How could we
address these

problems?

If p is near a max or min,
not a root, we can get stuck

The Cooper Union for the Advancement of Science and Art

Newton-Raphson failure

Use limited step size
(“trust radius”)

After N iterations, try again with a new guess.
Can use bisection, finish with Newton (“polishing”)

Use bounds pmin, pmaxIf p is near a max or min,
not a root, we can get stuck

If f’(p) ≈ 0, f(p) / f’(p)
will be nonsense

The Cooper Union for the Advancement of Science and Art

Quadratic vs Linear Convergence
An algorithm/sequence converges linearly if, for large n:

And quadratically if:

• Newton's Method converges quadratically
(if at all), bisection linearly (every time)

• See F&B page 51 for more details

The ratio errorn+1 / errorn
is bounded by a constant K

(for bisection, K = 0.5)

The ratio errorn+1 / errorn
2

is bounded by a constant K
(drop in error accelerates)

The Cooper Union for the Advancement of Science and Art

Bisection vs Newton-Raphson
Bisection Newton

Convergence?

Always
converges?

Special
conditions?

Good when?

The Cooper Union for the Advancement of Science and Art

Bisection vs Newton-Raphson
Bisection Newton

Convergence? Linear Quadratic

Always
converges? Yes No, if bad p0 or if

we hit f’(pn) ≈ 0

Special
conditions?

Need the
bounds a, b

Need a guess p0,
need to have f’(x)

Good when? We need
stability

We need
accuracy & speed

The Cooper Union for the Advancement of Science and Art

def f_df(x): # example function: f(x) = x**2 - 6

 return x**2 - 6, 2 * x # return f(x) and f'(x)

rel_x_tolerance = 1e-4

n_max = 5

p0 = 1.0 # very simple guess

for i in range(n_max):

 f_p0, df_p0 = f_df(p0) # get f(x) and f'(x)

 p = p0 - f_p0 / df_p0 # get new point p

 if abs((p - p0) / p) < rel_x_tolerance:

 break

 p0 = p # try again from new point p

print(f'p**2 = {p**2}') # p**2 = 6.00000000002

Code for Newton-Raphson

The Cooper Union for the Advancement of Science and Art

Activity: Newton-Raphson √6

Use Newton's Method to find sqrt(6) from an
initial guess of p0 = 1:

At each step, record your guess pn and your
relative error bound abs((pn-1 - pn) / pn). Stop
when the relative error bound is under 0.01.

The Cooper Union for the Advancement of Science and Art

Answer: Newton-Raphson by Hand

The Cooper Union for the Advancement of Science and Art

Root Finding Implementations

1. For linear or quadratic, solve analytically
2. For polynomials of order > 2, use “roots” in

numpy: numpy.roots(P) gives all the roots
3. For general nonlinear equations, use

scipy.optimize: define a function f, then
optimize.newton(f, guess) gives one root
near your initial guess “guess”
○ What might scipy.optimize.newton do if

function f doesn’t return its derivative f’?

The Cooper Union for the Advancement of Science and Art

Summary and Problems
● Open Python Numerical Methods, go to

Chapter 19.6: Summary and Problems
● Solve the problem

beginning "Consider
the problem of
building a pipeline..."

● Note, same with an
offshore wind turbine

All reading for next week: linear, spline, & Lagrange
interpolation (PNM 17.1-4), numerical derivatives

(PNM 20.1-2) & integrals (PNM 21.1-3)

