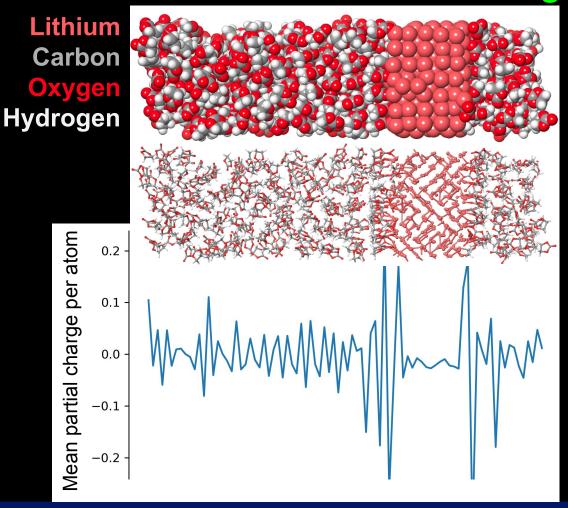


ChE352
Numerical Techniques for Chemical Engineers
Professor Stevenson

Lecture 7

Remote class Feb 21 & 22

I will be presenting at the Schrodinger Materials Science Summit in San Diego



Designing Without The Data

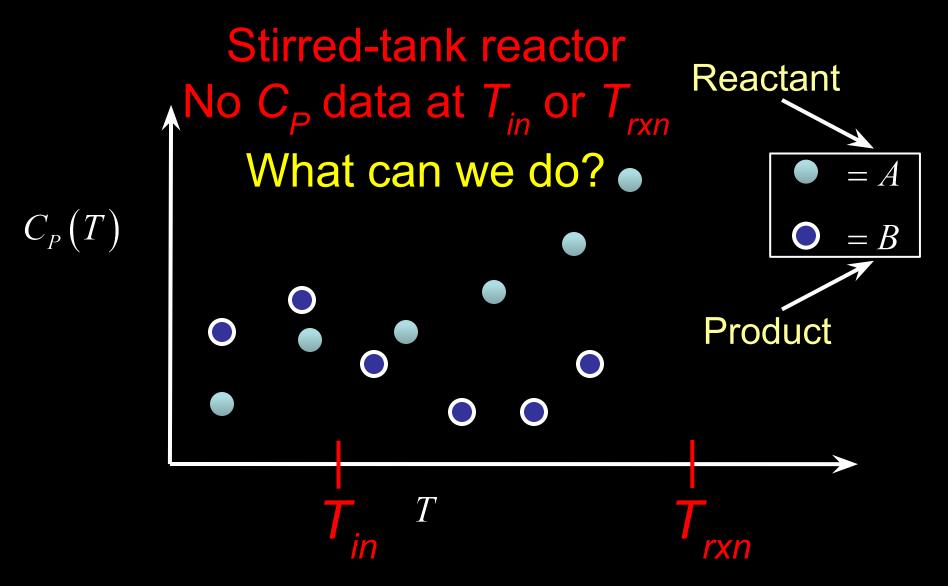
Suppose you need to scale up a reactor to make a new drug ASAP. In order to avoid thermal runaway,

you need to know the thermal properties of your reactants and products.

You need <u>heat capacities</u>, but you don't have data at the right temperatures...

(Very few chemicals have sufficient data)

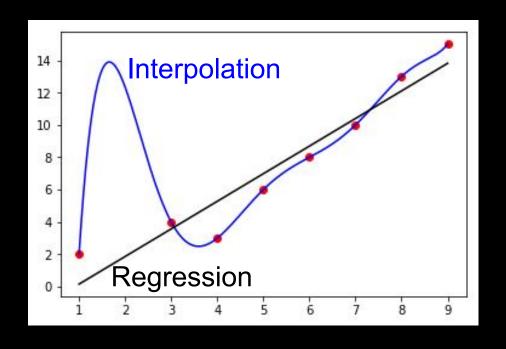
A Typical Data Situation



Interpolation & Regression

Interpolation matches data exactly at each known point, but maybe not in between.

Regression
minimizes expected
error overall - not an
exact match at the
known points, less
risk of a big error.



Which is better?

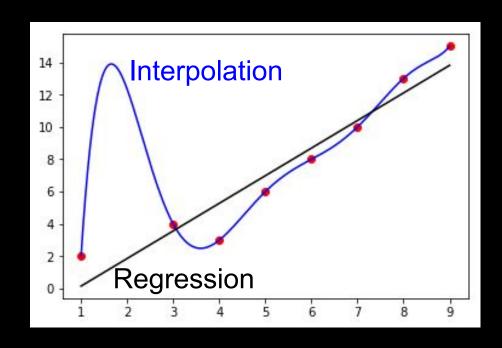
Depends on the engineering problem

Example engineering problems?

Think about the kinds of data that would make one method or another work better...

Interpolation?

Regression?



Which is better?
Depends on the engineering problem

Weierstrass theorem

 For any continuous function f, there exists a polynomial P(x) with an error bound ε:

$$\forall f \in C[a,b], \quad \forall \varepsilon > 0$$

$$\exists P(x) : |f(x) - P(x)| < \varepsilon \quad \forall x \in [a,b]$$

$$f(x)+\varepsilon$$

$$f(x)-\varepsilon$$

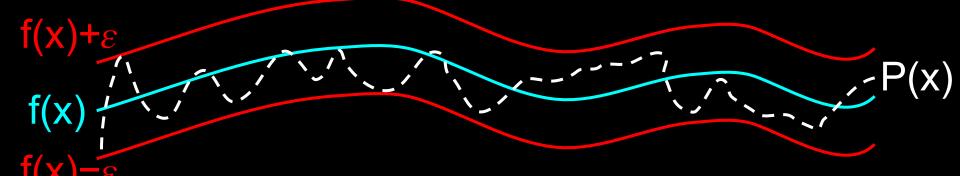
What does this not guarantee?

Weierstrass theorem traps

- No bounds on the derivative or curvature
- No guarantee that the optima are the same

$$\forall f \in C[a,b], \quad \forall \varepsilon > 0$$

$$\exists P(x) : |f(x) - P(x)| < \varepsilon \quad \forall x \in [a,b]$$



Theorems are like contract lawyers We want a well-behaved polynomial

Lagrange Polynomials

- Say we want our polynomial to be exact at our data points, and have lowest possible degree
- This is the definition of <u>Lagrange Polynomials</u>

$$L_{n,j}(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{j-1})(x - x_{j+1}) \dots (x - x_n)}{(x_j - x_0)(x_j - x_1) \dots (x_j - x_{j-1})(x_j - x_{j+1}) \dots (x_j - x_n)}$$
Same

$$L_{n,j}(x) \equiv \prod_{\substack{i=0\\i\neq j}}^{n} \frac{\left(x - x_{i}\right)}{\left(x_{j} - x_{i}\right)}, \quad \begin{bmatrix} \text{Lagrange } n \\ P_{n}(x) \equiv \sum_{j=0}^{n} f\left(x_{j}\right) L_{n,j}(x) \\ \text{Basis} \end{bmatrix}$$

Lagrange
$$P_n(x) = \sum_{j=0}^{n} f(x_j) L_{n,j}(x)$$
Data Basis

Lagrange polynomial for 2 points

Find the Lagrange polynomial for this data:

$$x_0, y_0 = (1, 3), x_1, y_1 = (2, 3)$$

$$L_0(x) = \begin{bmatrix} L_0(x) = 1 \\ L_1(x) = 1 \end{bmatrix}$$
With a weight these two line

$$L_{0}(x) = \frac{x - x_{1}}{x_{0} - x_{1}}$$

$$L_{1}(x) = \frac{x - x_{0}}{x_{1} - x_{0}}$$

With a weighted sum of these two lines, you can make any line!

$$P(x) = L_0(x) f(x_0) + L_1(x) f(x_1) \approx f(x) on [x_0, x_1]$$

Lagrange polynomial for 2 points

Find the Lagrange polynomial for this data:

$$x_{0}, y_{0} = (1, 3), x_{1}, y_{1} = (2, 3)$$

$$x - 2 \over 1 - 2 \qquad L_{0}(x) = \frac{x - x_{1}}{x_{0} - x_{1}}$$

$$x - 1 \over 2 - 1 \qquad L_{1}(x) = \frac{x - x_{0}}{x_{1} - x_{0}}$$

$$x - 1 \over 2 - 1 \qquad L_{1}(x) = \frac{x - x_{0}}{x_{1} - x_{0}}$$
In this case, a constant: 3
$$(2 - x) * 3 \qquad + (x - 1) * 3 \qquad = 3$$

$$P(x) = L_{0}(x) f(x_{0}) + L_{1}(x) f(x_{1}) \approx f(x) on[x_{0}, x_{1}]$$

Lagrange math & code

$$L_{n,j}(x) \equiv \prod_{\substack{i=0\\i\neq j}}^{n} \frac{(x-x_i)}{(x_j-x_i)},$$

```
P_n(x) = \sum_{j=0}^n f(x_j) L_{n,j}(x)
```

```
def lagrange_Lj(x, j, x_data):
    Returns the j-th Lagrange function L,
        as defined by the points x_data,
        evaluated at point x.

L = 1.0
for i in range(len(x_data)):
    if i==j:
        continue
    dx = x - x_data[i]
    x_interval = x_data[j] - x_data[i]
    L *= dx / x_interval
    return L
```

Lagrange Polynomials for n > 1

- What if we have 3, 5, 10, etc. data points?
- Same procedure: values of f(x_k) are the weights for the basis functions $L_{n,k}(x)$

$$L_{n,j}(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_{j-1})(x - x_{j+1})\dots(x - x_n)}{(x_j - x_0)(x_j - x_1)\dots(x_j - x_{j-1})(x_j - x_{j+1})\dots(x_j - x_n)}$$

$$L_{n,j}(x) \equiv \prod_{\substack{i=0\\i\neq j}}^{n} \frac{\left(x - x_{i}\right)}{\left(x_{j} - x_{i}\right)}, \quad \begin{bmatrix} \text{Lagrange } n \\ P_{n}(x) \equiv \sum_{j=0}^{n} f(x_{j}) L_{n,j}(x) \\ \text{Basis} \end{bmatrix}$$

Lagrange
$$P_n(x) = \sum_{j=0}^{n} f(x_j) L_{n,j}(x_j)$$
Data Basis

$P_n(x)$ has Bounded Error, but. . .

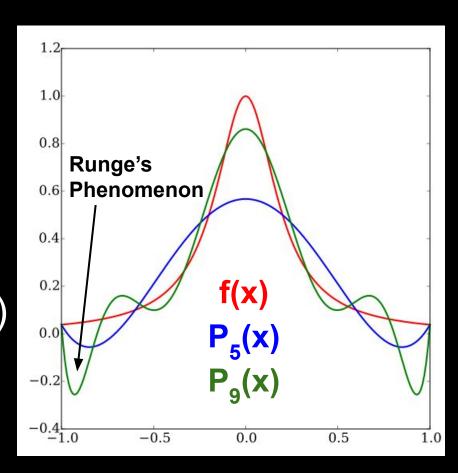
We can bound the error in using $P_n(x)$ to approximate f(x) (Look familiar?):

True Error term
$$f(x) = P_n(x) + \frac{f^{(n+1)}(\zeta(x))}{(n+1)!}(x-x_0)(x-x_1)\dots(x-x_n)$$
 Lagrange

Not always helpful: the true f(x) is not known when we only have data, let alone a bound on its (n+1)th derivative.

Problem: Runge's Phenomenon

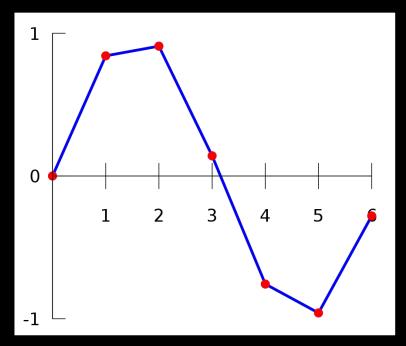
- Lagrange gives higher-n polynomials for higher-n datasets
- High-n polynomials have large derivatives (Why?)
- Between datapoints, P(x) will oscillate ("ring")
- This can get really bad



How can we fit more points without higher-order polynomials?

Piecewise Methods

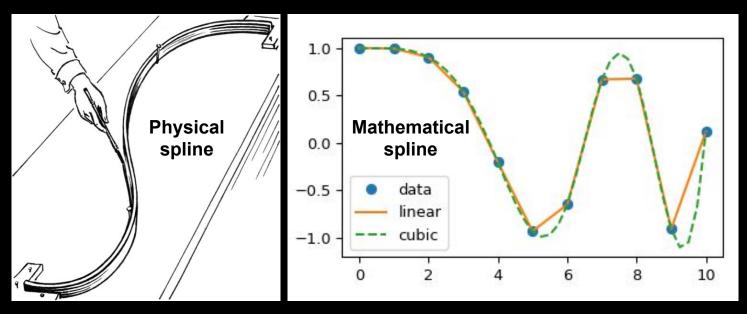
 Piecewise linear interpolation – draw/calculate a line between adjacent data points to estimate an intermediate value – How many lines for n+1 points?



- Simple
- Robust
- Any dataset size
- No oscillation Any problems?

Splines

- Piecewise low-n polynomials fitted to match each datapoint <u>and be smooth</u>
- Based on how an elastic piece of metal (a "spline") physically curves between points



Cubic splines

Smooth means that for each datapoint x_i:

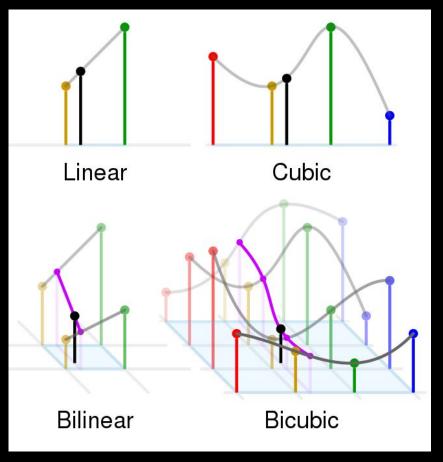
$$P'_{i}(x_{i}) = P'_{i+1}(x_{i})$$

$$P''_{i}(x_{i}) = P''_{i+1}(x_{i})$$

- Every cubic has 4 coefficients
- Every point has x, f(x), P'(x), P"(x)
 - \circ Get P', P" from $f(x_{i+1}) f(x_i) / (x_{i+1} x_i)$
 - Need to choose P', P" at boundaries
- Solve a linear system of equations to determine coefficients (Ax = b)

Higher dimension interpolation

 Example: heat capacity as a function of T and P (more dimensions: mixture ratio...)



- Can use similar methods
- Getting enough data is even harder
- Regression helps
- Difficult to visualize after 2-D

Tools for interpolation

- <u>Spreadsheet</u> trendlines on graphs are interpolation if polynomial is order <= n for n+1 points, regression otherwise (Ax = b)
- <u>Python</u> numpy.polyfit, numpy.polyval (evaluates polynomial at point), scipy.interpolate.lagrange, scipy.interpolate.CubicSpline
- <u>Calculator</u> never a bad idea to try a simple linear interpolation as a check
- Brain nearest-neighbor is very fast!

Interpolation Summary

- You can always find a single polynomial of order n which fits any n+1 data points...
 - ...But if n > 4, you should use a piecewise method
- Lagrange (and similar methods) use <u>one</u> <u>polynomial</u> for entire data set
- You can use interpolation methods to extrapolate, but expect problems (Why?)
 - Safer to use linear, not higher order (Why?)
- We'll see Lagrange's P_n(x) again soon...

Summary and Problems

 Open Python Numerical Methods, go to Chapter 17.6: Summary and Problems https://pythonnumericalmethods.berkeley.edu/ https://pythonnumericalmethods.berkeley.edu/ https://notebooks/chapter17.06-Summary-and-Problems.html

Do problem 1:

```
def my_lin_interp(x, y, X):
    # returns an array Y containing linear
    # interpolation values of data x,y
    # for the array of desired inputs X
```