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Recall: Initial Value Problems

True solution

WE WANT y(t)

: d_y_
_5___ Siope 1) RS M —f(t>J/)

\‘-\ Approximated

solution a<lt<b, y(a)za
tayeR, yR—)R
R ->R

| continuous

Slope f(xp. Vo)

Why can't we use trapezoidal integration”?
What method can we use instead?
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Can you find more IVP examples?

* Anything involving rate of change
- Reaction rates

- F=ma

- Epidemics

- Time-dependent Schrodinger equation
L0 h? 5
B (e ) = 5+ V(w0 ¥lat)

* Other examples?

- We define dy/dt = f(t, y) because f(t, y)

Is the function we actually have in IVPs
-y is the function we want
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Recall: Euler's Method
y(t) = y(6)+hf (1, (1))

Pronounced the same as "oiler"
Solve the IVP by taking steps along the derivative



http://www.youtube.com/watch?v=v-pbGAts_Fg
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Recall: Euler’'s Method
y(t) = y(6)+hf (1, (1))

Example: f(H)=t" t,=0 yt)=0 h=1

t, =h=1

y(l) = 0 +1 * 0% = 0

t2 - 2 * h — 2 6 Step size 1.0 is too big
~ % 2 for thls I\(P: accuracy

y ( 2 + 1 1< = 1 is quickly lost

+
=
*
N
N
1
U1
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Euler's Method to get all w]i]

We can define a vector of "time" (call it "t")
and calculate our approximate y(t) (aka "w")
by iterating forwards in "time" from t, = a:

t, | |a | W, | (1)

[, a+h W, Wo"'hf(tmwo)
(=1, |=|a+2h , w=lw, |=|w+hf(4,w)

Iy _CH'(N_I)h_ | W] | W +hf(tN—2>wN—2)
t,we RY Why "time" in quotes?

What if we want in-between w values?
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Activity: Euler in Python (15 minutes)
y(tm) = y(ti)—l—hf(tl.,y(l‘i)) Euler's method

Write a Python function which implements
Euler’'s method for the IVVP for this reaction:

dC 0
dTEB =—k,Cpp, Cpp (T = O) =C,

Assume: k.= 1.0, COEB =2.0. 1. =10.0

» “final

Use step size h = 0.01. Does the h value matter?

Make a list of your approximate C_; at each step,
and if you have time, plot your results vs t
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Solution: Euler in Python
y(tm) = y(ti)—l—hf(tl.,y(tl.)] Euler's method
dC

dTEB =—k,Cpp, Cpp (T = O) =C,,

Analytical =

Crp = C%B exp (—k‘fT)
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|s there a better IVP method?

Euler's Method is straightfoward, works if

you can afford a small h
o Local error O(h?), global error O(h)

But we want better than O(h)

What is local error vs global error?
Why is global error 1/h times bigger?
Why can't we always make h smaller?

How can we make a better method?
o Consider where Euler's Method comes from
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Taylor Methods of Order n

* Euler’'s method uses just the linear Taylor
terms, but we could use up to any n:

y(1)=ly () +(1-1)y (4.)+(f‘4)2 ) (z;.)+...+ﬂy<"> (z.)+(f“')nﬂ P (&)

n! Y (n+1)!

hn+1
(n+1)!

= y,-+1=yl-+hf(l:-,y,-)+—f'(t,-,yl-)+---+%f(”‘l)(t,-,y,-)+ SELv(E))

Linear terms Quadratic and higher terms

» By definition, y'(t) = f(t, y) = ' 2Ways have

this in an IVP
 2nd derivative: y"(t) = f'(t, y) «== Miant not

have this

* n-th derivative: y(t) = f™!(t, y)
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Taylor Methods of Order n

* Euler’'s method uses just the linear Taylor
terms, but we could use up to any n:

y()=ly(t)+(—1)y (¢)+ (t_ti)z y (z‘l.)+...+uy(”) (7,)1+ (t_t")nfl ) (&)

2 n! (n+1)'

= T S ) et S ) (. (E)
h2 v hn (n—l)

Via RVt bf (6,3 ) S (s y) F ot = [0 (19,

* |f we use a series of order n, the local error
for each step is O(A""!) (Why?)

* Global error after all steps is O(#") (Why?)
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Activity: 2" Order Taylor Methods

2

h n-
yi+1zyi+hf(ti>yi)+7f (tzﬂy)_l_ +_f( 1)( z’y)

Translate the Taylor polynomial formula above into
an iterative step for the 2"%-order Taylor method for
IVPs, giving w_, interms of w,, t, 1, /', and h.

Use your general expression to define the iterative
step w_, for this IVP:

y=y-t t=0 y(0)=¢e+ 1
Leave your expression in terms of h (Why?)
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Answer: 2"Y Order Taylor Methods
Euler’s method: y=y—-t t,=0 y(0)=e+1

W, =e+1 //

w.,, =w+h(w—t)=(h+1)w —ht, (i=0...N-2)

i+1

2" order Taylor:
2 h2

wm=wi+hf(ti,wl.)+%f'(ti,w) w4 B, 1)+ 22 (w=1),

2 2 2 2
:w,.+//zwl.—htl.+h—( .—z‘) " h—+h+1 W, — h(h+1jt i
2 2 |2 2 2

What are some drawbacks of this method?
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The problem with 1

Taylor methods gain more accuracy by using
more derivatives of f

o Recall: y(t) = f™(t, y)
But derivatives of fare rarely available

Can we approximate 7'(t, y) using the values
of /(t, y)? How?

The resulting methods are the most popular
IVP solvers: Runge-Kutta
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Runge-Kutta Methods: RK2

Use 2D Taylor series & the chain rule to find
f(t, y), with At = h/2 and Ay = At f(t, y). Then
plug f'(t, y.) into the 2" order Taylor method.

F(t+ ALy +AY)~ f(1.y)+ A,[QJ +Ay(afj

2D Taylor seriesiny, t — ot Oy

Chain rule ' — @f 6f dy
gives f'(t, yi)_>f (ti’ yi) R (Ej y, i (al,y (E s

her— 2" order

y,+1 ~ y T hf (tl > y )+ 7f (ti, yi ) <_-rl;?él((j);]r;r?(et,t,h)(’),)d
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Runge-Kutta Methods: RK2

St Vi) )+ At(aafj +Ay(2{/] } <— 2D Taylor series in y, t

h g Same as chain rule!

=/ (4:3:) 4] (aJ o/ (63) (ayl,yl ’ l ‘
of of _ h (Y AN

= f(t.3)+ 2[[8t]m + /(t.5,) (@]4,y1}_f(tl y)w{(@{jﬁ + [dtl (ayl,yl

| By definition: 1'(t, y) = dy/dt A

Chain rule

| ' _( /)
gives f'(t, yi)ﬁ/ 2= ( Ot jy +(6y ]y (dt )

f t yz _|:f z+1 yz+1 f(ti’yi)]

la}
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Runge-Kutta Methods: RK2

. 2
f(t.3)= Z[f(tz-wym)—f(tz-,yz-)], Given f', we can plug

it into the 2" order
2 ! /
W =, hf (1,m,)+ % 7o) S Taylor IVP method

W, =W, +hf(l‘i,wz-)+h—2(zj[f(ti+1»wi+l)_f(ti’wi)]

=w, +hf (t,w,)+h| f(t0.m,)-f({.w)] —
Win =W, +hf(tz"wz')+hf(tz’+l9wi+l)_hf(tz"wz')

:wi+hf(ti+1’wz_+l):wi+hf(l‘i+§,wj+§f(tiawi)] —>

2 method for IVPs"

W =W +hf(tf +ﬁ,wz- +%f(t,-,wz-)] «— RK2, aka “midpoint
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Activity: RK2 in Python (10 minutes)
y(tm) zy(tl.)—l—hf(tl.,y(l‘i)) Euler's method

Copy your Python IVP solver from before and
change it to RK2:

Wiy =W, +hf[é- +§,wf +%f(tz-,wz-)] RK2

Make a list of your approximate C_; at each step,
and if you have time, plot your results vs t

How does the dependence on h change?
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Solution: RK2 in Python

Wiy =W, +hf[fz- +g,wi +gf(tf,wi)j RK2

dC

dTEB =—k,Cpp, Cpp (T = O) =C,,

— h =0.01

h=0.1
—— h=0.5
— h=1.0

Analytlcal — —— Analytical

\ OEB = C%B exXp (—k‘fT)
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Better Runge-Kutta?

Different values for At and Ay in 2D Taylor
make new IVP methods (F&B 185-187)

Order 2 methods have global approximation
error of O(h?)

Most common RK method for solving IVPs is
order 4, which uses the Taylor terms up to h*

This method is called RK4 or just The
Runge-Kutta Method for IVPs

Given this description, what is the big-O of
local & global error for RK4?
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"The" Runge-Kutta Method: RK4

W =W +l(k1+2k2+2k3+k4)

1+ 6 |
Where: k = hf(z‘,.,w,.) * Like RK2 but more
» Global error O(h*)

h 1 |

K, = hf[f,- =W, +—k1) -— * Requires 4 calls to
2 2

J (L, y) per step
k, = hf(t,. +ﬁ,wl. +lk2j * Don't need f'(t, y)

2 2
« Usually the sweet
ky=hf (1, w,+k;) spot for accuracy
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Why stop at RK47

The main cost for using an IVP algorithm is
the calls to function f— fewer is better

Euler needs 1 function evaluation per step
RK4 needs 4

RK4 is only useful if it allows step sizes over
4x bigger, with the same accuracy (it does)

Table on p. 188 of F&B shows that RK4 is
superior to lower and higher order methods
by this metric under reasonable assumptions
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Activity: Local Error in RK4

1. Use RK4 to estimate y(0.1) for this IVP;
y=y-t t=0 y0)=e+]l h=0.1

2. Just as a demonstration of the error,
compare your approximation to the
exact answer y(t) = e"! +t + 1 to get
the actual local relative approximation
error. Is it similar in scale to h°?
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Answer: Local Error in RK4
w,=e+1, h=0.1

W =e+1+1(k1 +2k, +2k, +k, ) =14.104165794

6
Where: k =0.1[w,—1,]=0.1e+0.1
B h
k, =(0.1)| w, +=k —1,—— | =0.105¢ +0.1
2 2
B h
ke, =(0.1) w0+5k2—1‘0—5 =0.10525¢+0.1
k, =(0.1)[w, +k, —1,]=0.110525¢ +0.1

y,=e"'+1.1 — |error =5.61x10" (really tiny)
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SciPy generic IVP solver: solve ivp

from scipy.integrate import solve ivp
sol = solve ivp(fun, (t0, t end), [y0@])
plt.plot(sol.t, sol.y[0], label="RK45")

» Uses RK4 but with dynamic h, with an error
estimate based on RKS5 - known as RK4(5)
o Also has other, specialized methods

» Can solve for multi-dimensional y in f(t, y)

* Returns an object containing data about the
solution, including sol.t, sol.y, & sol.success
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IVP Systems

* 1D problems are common, but so are IVPs
with multiple outputs:

dNs _kNg kNN, -R., N,(z=0)=vcz Where are the

d
o ’ dependent
ZEB R =0)=v(C?° .
& - e Na(2=0)=1C variables here?
d—P——p"z(l_SJ 1500=2) 75| D gy,
dz d,\ ¢ Re, Tl od
PP=2RT = p=2M _ - ZRT(NEB+N +N, +N,,)

ZRT P

* We need output to be a vector instead of a
scalar - u now instead of y
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Numerical Soln. of IVP Systems
Suppose your problem now looks like this:

t,<t<t__

du

jzﬂ(l,ul u,,.
du

dz‘2 ZfZ(t’”l U,
du,

dt =f (t,ul,u2

a, not a du (t
S~ d( )=f(t,u(t)),
..,um), ul(t:to):al \t
u(tzto)za,
o), w(t=t)=a, = t<t<t
u:R— R,
----- w,) w,(t=t)=a, /If:R™ >R",
Vector function te\R, aeR”

Same methods work!

Vectc\)r function
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IVP Systems in Python

from scipy.integrate import solve 1ivp
def fun(t, u): # 3-D IVP

CA, CB, CC=u

. calculate du/dt here ...

return dAdt, dBdt, dCdt
sol = solve ivp(fun, (t@, t final), u@)
rlt.plot(sol.t, sol.y[0], label='[A]")
rlt.plot(sol.t, sol.y[1l], label="'[B]")
nlt.plot(sol.t, sol.y[2], label="'[C]")
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Million+ Dimension |VP Systems

e |VPs often scale to millions of dimensions

e Example: molecular dynamics, every [X, Y, Z]
of every atom is another dimension of w(t)

e Same techniques apply, just more compute
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10"?+ Dimension IVP Systems

e Machine learning all known text / images
e Same techniques apply, just more compute

Zero-shot One-shot Few-shot

Natural Language e e
Prompt \M\/

\I
\
\'\

”

’
-
-
’
-
-

- \

\

No Prompt

Accuracy (%)

- e 1.3B Params

-
10
Number of Examples in Context (K)
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Activity: Coding RK4

+ Write a function that w, =y(a)=«

calculates the next 1
step of RK4: W, =W +g(kl+2k2+2k3+k4)
def rka(f, ti, wi, h): Where: k =hf(t.w,)
... your code... 2 !
return w_next k, = hf(z‘l +59W; +5klj
* Try it with this IVP: , |
def fun(t, w): k3:hf(ti+—,wi+—k2]
return w - t 2 2

0 = 0; y0 = np.e+l k4=hf(ti+1vwi+k3)

When you've got it, compare vs scipy.integrate.solve ivp
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Pre-reading for next week

Predictor-corrector & adaptive methods for IVPs,
higher-order IVPs, stiff [VPs:
PNM 22.6-7, F&B 5.6-8.

Verlet integration:


https://www.algorithm-archive.org/contents/verlet_integration/verlet_integration.html
https://www.algorithm-archive.org/contents/verlet_integration/verlet_integration.html

