
The Cooper Union for the Advancement of Science and Art

ChE352
Numerical Techniques for Chemical Engineers

Professor Stevenson

Lecture 10

The Cooper Union for the Advancement of Science and Art

Recall: Initial Value Problems

Why can't we use trapezoidal integration?
What method can we use instead?

The Cooper Union for the Advancement of Science and Art

Can you find more IVP examples?
• Anything involving rate of change

– Reaction rates
– F = ma
– Epidemics
– Time-dependent Schrodinger equation

• Other examples?
• We define dy/dt = f(t, y) because f(t, y)

is the function we actually have in IVPs
– y is the function we want

The Cooper Union for the Advancement of Science and Art

Recall: Euler’s Method

Pronounced the same as "oiler"
Solve the IVP by taking steps along the derivative

http://www.youtube.com/watch?v=v-pbGAts_Fg

The Cooper Union for the Advancement of Science and Art

Recall: Euler’s Method

Example: f (t) = t
2 t0 = 0 y(t0) = 0 h = 1

t
1
 = h = 1

y(1) ≈ 0 + 1 * 02 = 0
t
2
 = 2 * h = 2

y(2) ≈ 0 + 1 * 12 = 1
t
3
 = 3 * h = 3

y(3) ≈ 1 + 1 * 22 = 5

Step size 1.0 is too big
for this IVP: accuracy

is quickly lost

The Cooper Union for the Advancement of Science and Art

Euler’s Method to get all w[i]
We can define a vector of "time" (call it "t")
and calculate our approximate y(t) (aka "w")
by iterating forwards in "time" from t0 = a:

Why "time" in quotes?
What if we want in-between w values?

The Cooper Union for the Advancement of Science and Art

Activity: Euler in Python (15 minutes)

Write a Python function which implements
Euler’s method for the IVP for this reaction:

Assume: kf = 1.0, C0
EB = 2.0, τfinal = 10.0

Use step size h = 0.01. Does the h value matter?
Make a list of your approximate CEB at each step,

and if you have time, plot your results vs t

Euler's method

The Cooper Union for the Advancement of Science and Art

Solution: Euler in Python
Euler's method

Analytical =Euler
solution
is nearly
exact at
small dt

Euler
solution

goes bad
fast at

large dt

The Cooper Union for the Advancement of Science and Art

Is there a better IVP method?
• Euler's Method is straightfoward, works if

you can afford a small h
○ Local error O(h2), global error O(h)

• But we want better than O(h)
• What is local error vs global error?
• Why is global error 1/h times bigger?
• Why can't we always make h smaller?
• How can we make a better method?

○ Consider where Euler's Method comes from

The Cooper Union for the Advancement of Science and Art

Taylor Methods of Order n
• Euler’s method uses just the linear Taylor

terms, but we could use up to any n:

Linear terms Quadratic and higher terms Error term

• By definition, y'(t) = f (t, y)

• 2nd derivative: y''(t) = f '(t, y)

• n-th derivative: yn(t) = f n-1(t, y)

We always have
this in an IVP

Might not
have this

Good luck

The Cooper Union for the Advancement of Science and Art

Taylor Methods of Order n

• If we use a series of order n, the local error
for each step is O(hn+1) (Why?)

• Global error after all steps is O(hn) (Why?)

• Euler’s method uses just the linear Taylor
terms, but we could use up to any n:

The Cooper Union for the Advancement of Science and Art

Translate the Taylor polynomial formula above into
an iterative step for the 2nd-order Taylor method for
IVPs, giving wi+1 in terms of wi, ti, f, f ', and h.
Use your general expression to define the iterative
step wi+1 for this IVP:

y’ = y – t t0 = 0 y(0) = e + 1
Leave your expression in terms of h (Why?)

Activity: 2nd Order Taylor Methods

The Cooper Union for the Advancement of Science and Art

Answer: 2nd Order Taylor Methods
Euler’s method:

2nd order Taylor:

What are some drawbacks of this method?

y’ = y – t t0 = 0 y(0) = e + 1

The Cooper Union for the Advancement of Science and Art

The problem with f '

• Taylor methods gain more accuracy by using
more derivatives of f
○ Recall: yn(t) = f n-1(t, y)

• But derivatives of f are rarely available
• Can we approximate f '(t, y) using the values

of f (t, y)? How?
• The resulting methods are the most popular

IVP solvers: Runge-Kutta

The Cooper Union for the Advancement of Science and Art

Chain rule
gives f '(ti, yi)

Use 2D Taylor series & the chain rule to find
f '(ti, yi), with Δt = h/2 and Δy = Δt f (ti, yi). Then
plug f '(ti, yi) into the 2nd order Taylor method.

2nd order
Taylor method
needs f '(ti, yi)

2D Taylor series in y, t

Runge-Kutta Methods: RK2

The Cooper Union for the Advancement of Science and Art

Same as chain rule!

2D Taylor series in y, t

Chain rule
gives f '(ti, yi)

By definition: f '(t, y) = dy/dt

Runge-Kutta Methods: RK2

The Cooper Union for the Advancement of Science and Art

Given f ', we can plug
it into the 2nd order
Taylor IVP method

RK2, aka "midpoint
method for IVPs"

Runge-Kutta Methods: RK2

The Cooper Union for the Advancement of Science and Art

Activity: RK2 in Python (10 minutes)

Copy your Python IVP solver from before and
change it to RK2:

Make a list of your approximate CEB at each step,
and if you have time, plot your results vs t
How does the dependence on h change?

RK2

Euler's method

The Cooper Union for the Advancement of Science and Art

Solution: RK2 in Python
RK2

Analytical =RK2
solution
is nearly
exact at
small dt

RK2
solution
does not
go bad
so fast

The Cooper Union for the Advancement of Science and Art

Better Runge-Kutta?
• Different values for Δt and Δy in 2D Taylor

make new IVP methods (F&B 185-187)
• Order 2 methods have global approximation

error of O(h2)
• Most common RK method for solving IVPs is

order 4, which uses the Taylor terms up to h4

• This method is called RK4 or just The
Runge-Kutta Method for IVPs

• Given this description, what is the big-O of
local & global error for RK4?

The Cooper Union for the Advancement of Science and Art

"The" Runge-Kutta Method: RK4

• Like RK2 but more
• Global error O(h4)
• Requires 4 calls to

f (t, y) per step
• Don't need f '(t, y)
• Usually the sweet

spot for accuracy

The Cooper Union for the Advancement of Science and Art

Why stop at RK4?
• The main cost for using an IVP algorithm is

the calls to function f – fewer is better
• Euler needs 1 function evaluation per step
• RK4 needs 4
• RK4 is only useful if it allows step sizes over

4x bigger, with the same accuracy (it does)
• Table on p. 188 of F&B shows that RK4 is

superior to lower and higher order methods
by this metric under reasonable assumptions

The Cooper Union for the Advancement of Science and Art

Activity: Local Error in RK4

1. Use RK4 to estimate y(0.1) for this IVP:
y’ = y – t t0 = 0 y(0) = e + 1 h = 0.1

2. Just as a demonstration of the error,
compare your approximation to the
exact answer y(t) = et+1 + t + 1 to get
the actual local relative approximation
error. Is it similar in scale to h5?

The Cooper Union for the Advancement of Science and Art

Answer: Local Error in RK4

The Cooper Union for the Advancement of Science and Art

SciPy generic IVP solver: solve_ivp
from scipy.integrate import solve_ivp

sol = solve_ivp(fun, (t0, t_end), [y0])

plt.plot(sol.t, sol.y[0], label='RK45')

• Uses RK4 but with dynamic h, with an error
estimate based on RK5 - known as RK4(5)
○ Also has other, specialized methods

• Can solve for multi-dimensional y in f(t, y)
• Returns an object containing data about the

solution, including sol.t, sol.y, & sol.success

The Cooper Union for the Advancement of Science and Art

IVP Systems
• 1D problems are common, but so are IVPs

with multiple outputs:

• We need output to be a vector instead of a
scalar - u now instead of y

Where are the
dependent
variables here?

The Cooper Union for the Advancement of Science and Art

Numerical Soln. of IVP Systems
Suppose your problem now looks like this:

Vector function
Vector function

a, not α

Same methods work!

The Cooper Union for the Advancement of Science and Art

IVP Systems in Python
from scipy.integrate import solve_ivp

def fun(t, u): # 3-D IVP

 C_A, C_B, C_C = u

 ... calculate du/dt here ...

 return dAdt, dBdt, dCdt

sol = solve_ivp(fun, (t0, t_final), u0)

plt.plot(sol.t, sol.y[0], label='[A]')

plt.plot(sol.t, sol.y[1], label='[B]')

plt.plot(sol.t, sol.y[2], label='[C]')

The Cooper Union for the Advancement of Science and Art

Million+ Dimension IVP Systems
● IVPs often scale to millions of dimensions
● Example: molecular dynamics, every [x, y, z]

of every atom is another dimension of w(t)
● Same techniques apply, just more compute

The Cooper Union for the Advancement of Science and Art

1012+ Dimension IVP Systems
● Machine learning all known text / images
● Same techniques apply, just more compute

The Cooper Union for the Advancement of Science and Art

Activity: Coding RK4
• Write a function that

calculates the next
step of RK4:

def rk4(f, ti, wi, h):
 ...your code...
 return w_next

• Try it with this IVP:
 def fun(t, w):
 return w - t
 t0 = 0; y0 = np.e+1

When you've got it, compare vs scipy.integrate.solve_ivp

The Cooper Union for the Advancement of Science and Art

Pre-reading for next week

Predictor-corrector & adaptive methods for IVPs,
higher-order IVPs, stiff IVPs:

PNM 22.6-7, F&B 5.6-8.

Verlet integration:
https://www.algorithm-archive.org/contents/verlet_integra

tion/verlet_integration.html

https://www.algorithm-archive.org/contents/verlet_integration/verlet_integration.html
https://www.algorithm-archive.org/contents/verlet_integration/verlet_integration.html

