The Cooper Union for the Advancement of Science and Art

ChE352
Numerical Techniques for Chemical Engineers

Professor Stevenson

Lecture 10

The Cooper Union for the Advancement of Science and Art

Recall: Initial Value Problems

True solution

WE WANT y(t)

: d_y_
_5___ Siope 1) RS M —f(t>J/)

\‘-\ Approximated

solution a<lt<b, y(a)za
tayeR, yR—)R
R ->R

| continuous

Slope f(xp. Vo)

Why can't we use trapezoidal integration”?
What method can we use instead?

The Cooper Union for the Advancement of Science and Art

Can you find more IVP examples?

* Anything involving rate of change
- Reaction rates

- F=ma

- Epidemics

- Time-dependent Schrodinger equation
L0 h? 5
B (e) = 5+ V(w0 ¥lat)

* Other examples?

- We define dy/dt = f(t, y) because f(t, y)

Is the function we actually have in IVPs
-y is the function we want

The Cooper Union for the Advancement of Science and Art

Recall: Euler's Method
y(t) = y(6)+hf (1, (1))

Pronounced the same as "oiler"
Solve the IVP by taking steps along the derivative

http://www.youtube.com/watch?v=v-pbGAts_Fg

The Cooper Union for the Advancement of Science and Art

Recall: Euler’'s Method
y(t) = y(6)+hf (1, (1))

Example: f(H)=t" t,=0 yt)=0 h=1

t, =h=1

y(l) = 0 +1 * 0% = 0

t2 - 2 * h — 2 6 Step size 1.0 is too big
~ % 2 for thls I\(P: accuracy

y (2 + 1 1< = 1 is quickly lost

+
=
*
N
N
1
U1

The Cooper Union for the Advancement of Science and Art

Euler's Method to get all w]i]

We can define a vector of "time" (call it "t")
and calculate our approximate y(t) (aka "w")
by iterating forwards in "time" from t, = a:

t, | |a | W, | (1)

[, a+h W, Wo"'hf(tmwo)
(=1, |=|a+2h , w=lw, |=|w+hf(4,w)

Iy _CH'(N_I)h_ | W] | W +hf(tN—2>wN—2)
t,we RY Why "time" in quotes?

What if we want in-between w values?

The Cooper Union for the Advancement of Science and Art

Activity: Euler in Python (15 minutes)
y(tm) = y(ti)—l—hf(tl.,y(l‘i)) Euler's method

Write a Python function which implements
Euler’'s method for the IVVP for this reaction:

dC 0
dTEB =—k,Cpp, Cpp (T = O) =C,

Assume: k.= 1.0, COEB =2.0. 1. =10.0

» “final

Use step size h = 0.01. Does the h value matter?

Make a list of your approximate C_; at each step,
and if you have time, plot your results vs t

The Cooper Union for the Advancement of Science and Art

Solution: Euler in Python
y(tm) = y(ti)—l—hf(tl.,y(tl.)] Euler's method
dC

dTEB =—k,Cpp, Cpp (T = O) =C,,

Analytical =

Crp = C%B exp (—k‘fT)

The Cooper Union for the Advancement of Science and Art

|s there a better IVP method?

Euler's Method is straightfoward, works if

you can afford a small h
o Local error O(h?), global error O(h)

But we want better than O(h)

What is local error vs global error?
Why is global error 1/h times bigger?
Why can't we always make h smaller?

How can we make a better method?
o Consider where Euler's Method comes from

The Cooper Union for the Advancement of Science and Art

Taylor Methods of Order n

* Euler’'s method uses just the linear Taylor
terms, but we could use up to any n:

y(1)=ly () +(1-1)y (4.)+(f‘4)2) (z;.)+...+ﬂy<"> (z.)+(f“')nﬂ P (&)

n! Y (n+1)!

hn+1
(n+1)!

= y,-+1=yl-+hf(l:-,y,-)+—f'(t,-,yl-)+---+%f(”‘l)(t,-,y,-)+ SELv(E))

Linear terms Quadratic and higher terms

» By definition, y'(t) = f(t, y) = ' 2Ways have

this in an IVP
 2nd derivative: y"(t) = f'(t, y) «== Miant not

have this

* n-th derivative: y(t) = f™!(t, y)

The Cooper Union for the Advancement of Science and Art

Taylor Methods of Order n

* Euler’'s method uses just the linear Taylor
terms, but we could use up to any n:

y()=ly(t)+(—1)y (¢)+ (t_ti)z y (z‘l.)+...+uy(”) (7,)1+ (t_t")nfl) (&)

2 n! (n+1)'

= T S) et S) (. (E)
h2 v hn (n—l)

Via RVt bf (6,3) S (s y) F ot = [0 (19,

* |f we use a series of order n, the local error
for each step is O(A""!) (Why?)

* Global error after all steps is O(#") (Why?)

The Cooper Union for the Advancement of Science and Art

Activity: 2" Order Taylor Methods

2

h n-
yi+1zyi+hf(ti>yi)+7f (tzﬂy)_l_ +_f(1)(z’y)

Translate the Taylor polynomial formula above into
an iterative step for the 2"%-order Taylor method for
IVPs, giving w_, interms of w,, t, 1, /', and h.

Use your general expression to define the iterative
step w_, for this IVP:

y=y-t t=0 y(0)=¢e+ 1
Leave your expression in terms of h (Why?)

The Cooper Union for the Advancement of Science and Art

Answer: 2"Y Order Taylor Methods
Euler’s method: y=y—-t t,=0 y(0)=e+1

W, =e+1 //

w.,, =w+h(w—t)=(h+1)w —ht, (i=0...N-2)

i+1

2" order Taylor:
2 h2

wm=wi+hf(ti,wl.)+%f'(ti,w) w4 B, 1)+ 22 (w=1),

2 2 2 2
:w,.+//zwl.—htl.+h—(.—z‘) " h—+h+1 W, — h(h+1jt i
2 2 |2 2 2

What are some drawbacks of this method?

The Cooper Union for the Advancement of Science and Art

The problem with 1

Taylor methods gain more accuracy by using
more derivatives of f

o Recall: y(t) = f™(t, y)
But derivatives of fare rarely available

Can we approximate 7'(t, y) using the values
of /(t, y)? How?

The resulting methods are the most popular
IVP solvers: Runge-Kutta

The Cooper Union for the Advancement of Science and Art

Runge-Kutta Methods: RK2

Use 2D Taylor series & the chain rule to find
f(t, y), with At = h/2 and Ay = At f(t, y). Then
plug f'(t, y.) into the 2" order Taylor method.

F(t+ ALy +AY)~ f(1.y)+ A,[QJ +Ay(afj

2D Taylor seriesiny, t — ot Oy

Chain rule ' — @f 6f dy
gives f'(t, yi)_>f (ti’ yi) R (Ej y, i (al,y (E s

her— 2" order

y,+1 ~ y T hf (tl > y)+ 7f (ti, yi) <_-rl;?él((j);]r;r?(et,t,h)(’),)d

The Cooper Union for the Advancement of Science and Art

Runge-Kutta Methods: RK2

St Vi))+ At(aafj +Ay(2{/] } <— 2D Taylor series in y, t

h g Same as chain rule!

=/ (4:3:) 4] (aJ o/ (63) (ayl,yl ’ l ‘
of of _ h (Y AN

= f(t.3)+ 2[[8t]m + /(t.5,) (@]4,y1}_f(tl y)w{(@{jﬁ + [dtl (ayl,yl

| By definition: 1'(t, y) = dy/dt A

Chain rule

| ' _(/)
gives f'(t, yi)ﬁ/ 2= (Ot jy +(6y]y (dt)

f t yz _|:f z+1 yz+1 f(ti’yi)]

la}

The Cooper Union for the Advancement of Science and Art

Runge-Kutta Methods: RK2

. 2
f(t.3)= Z[f(tz-wym)—f(tz-,yz-)], Given f', we can plug

it into the 2" order
2 ! /
W =, hf (1,m,)+ % 7o) S Taylor IVP method

W, =W, +hf(l‘i,wz-)+h—2(zj[f(ti+1»wi+l)_f(ti’wi)]

=w, +hf (t,w,)+h| f(t0.m,)-f({.w)] —
Win =W, +hf(tz"wz')+hf(tz’+l9wi+l)_hf(tz"wz')

:wi+hf(ti+1’wz_+l):wi+hf(l‘i+§,wj+§f(tiawi)] —>

2 method for IVPs"

W =W +hf(tf +ﬁ,wz- +%f(t,-,wz-)] «— RK2, aka “midpoint

The Cooper Union for the Advancement of Science and Art

Activity: RK2 in Python (10 minutes)
y(tm) zy(tl.)—l—hf(tl.,y(l‘i)) Euler's method

Copy your Python IVP solver from before and
change it to RK2:

Wiy =W, +hf[é- +§,wf +%f(tz-,wz-)] RK2

Make a list of your approximate C_; at each step,
and if you have time, plot your results vs t

How does the dependence on h change?

The Cooper Union for the Advancement of Science and Art

Solution: RK2 in Python

Wiy =W, +hf[fz- +g,wi +gf(tf,wi)j RK2

dC

dTEB =—k,Cpp, Cpp (T = O) =C,,

— h =0.01

h=0.1
—— h=0.5
— h=1.0

Analytlcal — —— Analytical

\ OEB = C%B exXp (—k‘fT)

The Cooper Union for the Advancement of Science and Art

Better Runge-Kutta?

Different values for At and Ay in 2D Taylor
make new IVP methods (F&B 185-187)

Order 2 methods have global approximation
error of O(h?)

Most common RK method for solving IVPs is
order 4, which uses the Taylor terms up to h*

This method is called RK4 or just The
Runge-Kutta Method for IVPs

Given this description, what is the big-O of
local & global error for RK4?

The Cooper Union for the Advancement of Science and Art

"The" Runge-Kutta Method: RK4

W =W +l(k1+2k2+2k3+k4)

1+ 6 |
Where: k = hf(z‘,.,w,.) * Like RK2 but more
» Global error O(h*)

h 1 |

K, = hf[f,- =W, +—k1) -— * Requires 4 calls to
2 2

J (L, y) per step
k, = hf(t,. +ﬁ,wl. +lk2j * Don't need f'(t, y)

2 2
« Usually the sweet
ky=hf (1, w,+k;) spot for accuracy

The Cooper Union for the Advancement of Science and Art

Why stop at RK47

The main cost for using an IVP algorithm is
the calls to function f— fewer is better

Euler needs 1 function evaluation per step
RK4 needs 4

RK4 is only useful if it allows step sizes over
4x bigger, with the same accuracy (it does)

Table on p. 188 of F&B shows that RK4 is
superior to lower and higher order methods
by this metric under reasonable assumptions

The Cooper Union for the Advancement of Science and Art

Activity: Local Error in RK4

1. Use RK4 to estimate y(0.1) for this IVP;
y=y-t t=0 y0)=e+]l h=0.1

2. Just as a demonstration of the error,
compare your approximation to the
exact answer y(t) = e"! +t + 1 to get
the actual local relative approximation
error. Is it similar in scale to h°?

The Cooper Union for the Advancement of Science and Art

Answer: Local Error in RK4
w,=e+1, h=0.1

W =e+1+1(k1 +2k, +2k, +k,) =14.104165794

6
Where: k =0.1[w,—1,]=0.1e+0.1
B h
k, =(0.1)| w, +=k —1,—— | =0.105¢ +0.1
2 2
B h
ke, =(0.1) w0+5k2—1‘0—5 =0.10525¢+0.1
k, =(0.1)[w, +k, —1,]=0.110525¢ +0.1

y,=e"'+1.1 — |error =5.61x10" (really tiny)

The Cooper Union for the Advancement of Science and Art

SciPy generic IVP solver: solve ivp

from scipy.integrate import solve ivp
sol = solve ivp(fun, (t0, t end), [y0@])
plt.plot(sol.t, sol.y[0], label="RK45")

» Uses RK4 but with dynamic h, with an error
estimate based on RKS5 - known as RK4(5)
o Also has other, specialized methods

» Can solve for multi-dimensional y in f(t, y)

* Returns an object containing data about the
solution, including sol.t, sol.y, & sol.success

The Cooper Union for the Advancement of Science and Art

IVP Systems

* 1D problems are common, but so are IVPs
with multiple outputs:

dNs _kNg kNN, -R., N,(z=0)=vcz Where are the

d
o ’ dependent
ZEB R =0)=v(C?° .
& - e Na(2=0)=1C variables here?
d—P——p"z(l_SJ 1500=2) 75| D gy,
dz d,\ ¢ Re, Tl od
PP=2RT = p=2M _ - ZRT(NEB+N +N, +N,,)

ZRT P

* We need output to be a vector instead of a
scalar - u now instead of y

The Cooper Union for the Advancement of Science and Art

Numerical Soln. of IVP Systems
Suppose your problem now looks like this:

t,<t<t__

du

jzﬂ(l,ul u,,.
du

dz‘2 ZfZ(t’”l U,
du,

dt =f (t,ul,u2

a, not a du (t
S~ d()=f(t,u(t)),
..,um), ul(t:to):al \t
u(tzto)za,
o), w(t=t)=a, = t<t<t
u:R— R,
----- w,) w,(t=t)=a, /If:R™ >R",
Vector function te\R, aeR”

Same methods work!

Vectc\)r function

The Cooper Union for the Advancement of Science and Art

IVP Systems in Python

from scipy.integrate import solve 1ivp
def fun(t, u): # 3-D IVP

CA, CB, CC=u

. calculate du/dt here ...

return dAdt, dBdt, dCdt
sol = solve ivp(fun, (t@, t final), u@)
rlt.plot(sol.t, sol.y[0], label='[A]")
rlt.plot(sol.t, sol.y[1l], label="'[B]")
nlt.plot(sol.t, sol.y[2], label="'[C]")

The Cooper Union for the Advancement of Science and Art

Million+ Dimension |VP Systems

e |VPs often scale to millions of dimensions

e Example: molecular dynamics, every [X, Y, Z]
of every atom is another dimension of w(t)

e Same techniques apply, just more compute

The Cooper Union for the Advancement of Science and Art

10"?+ Dimension IVP Systems

e Machine learning all known text / images
e Same techniques apply, just more compute

Zero-shot One-shot Few-shot

Natural Language e e
Prompt \M\/

\I
\
\'\

”

’
-
-
’
-
-

- \

\

No Prompt

Accuracy (%)

- e 1.3B Params

-
10
Number of Examples in Context (K)

The Cooper Union for the Advancement of Science and Art
Activity: Coding RK4

+ Write a function that w, =y(a)=«

calculates the next 1
step of RK4: W, =W +g(kl+2k2+2k3+k4)
def rka(f, ti, wi, h): Where: k =hf(t.w,)
... your code... 2 !
return w_next k, = hf(z‘l +59W; +5klj
* Try it with this IVP: , |
def fun(t, w): k3:hf(ti+—,wi+—k2]
return w - t 2 2

0 = 0; y0 = np.e+l k4=hf(ti+1vwi+k3)

When you've got it, compare vs scipy.integrate.solve ivp

The Cooper Union for the Advancement of Science and Art

Pre-reading for next week

Predictor-corrector & adaptive methods for IVPs,
higher-order IVPs, stiff [VPs:
PNM 22.6-7, F&B 5.6-8.

Verlet integration:

https://www.algorithm-archive.org/contents/verlet_integration/verlet_integration.html
https://www.algorithm-archive.org/contents/verlet_integration/verlet_integration.html

