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Recall: Initial Value Problems

Why can't we use trapezoidal integration?
What method can we use instead?
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Can you find more IVP examples?
• Anything involving rate of change

– Reaction rates
– F = ma
– Epidemics
– Time-dependent Schrodinger equation

• Other examples?
• We define dy/dt = f(t, y) because f(t, y) 

is the function we actually have in IVPs
– y is the function we want
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Recall: Euler’s Method

Pronounced the same as "oiler"
Solve the IVP by taking steps along the derivative

http://www.youtube.com/watch?v=v-pbGAts_Fg
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Recall: Euler’s Method

Example:   f (t) = t 
2    t0 = 0     y(t0) = 0    h = 1

t
1
 = h = 1

y(1) ≈ 0 + 1 * 02 = 0
t
2
 = 2 * h = 2

y(2) ≈ 0 + 1 * 12 = 1
t
3
 = 3 * h = 3

y(3) ≈ 1 + 1 * 22 = 5

Step size 1.0 is too big 
for this IVP: accuracy 

is quickly lost
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Euler’s Method to get all w[i]
We can define a vector of "time" (call it "t") 
and calculate our approximate y(t) (aka "w") 
by iterating forwards in "time" from t0 = a:

Why "time" in quotes?
What if we want in-between w values?
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Activity: Euler in Python (15 minutes)

Write a Python function which implements 
Euler’s method for the IVP for this reaction:

Assume: kf = 1.0, C0
EB = 2.0, τfinal = 10.0

Use step size h = 0.01. Does the h value matter?
Make a list of your approximate CEB at each step, 

and if you have time, plot your results vs t

Euler's method
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Solution: Euler in Python
Euler's method

Analytical =Euler 
solution 
is nearly 
exact at 
small dt

Euler 
solution 

goes bad 
fast at 

large dt
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Is there a better IVP method?
• Euler's Method is straightfoward, works if 

you can afford a small h
○ Local error O(h2), global error O(h)

• But we want better than O(h)
• What is local error vs global error?
• Why is global error 1/h times bigger?
• Why can't we always make h smaller?
• How can we make a better method?

○ Consider where Euler's Method comes from
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Taylor Methods of Order n
• Euler’s method uses just the linear Taylor 

terms, but we could use up to any n:

Linear terms Quadratic and higher terms Error term

• By definition, y'(t) = f (t, y)

• 2nd derivative: y''(t) = f '(t, y)

• n-th derivative: yn(t) = f n-1(t, y)

We always have 
this in an IVP

Might not 
have this

Good luck
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Taylor Methods of Order n

• If we use a series of order n, the local error 
for each step is O(hn+1) (Why?)

• Global error after all steps is O(hn) (Why?)

• Euler’s method uses just the linear Taylor 
terms, but we could use up to any n:
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Translate the Taylor polynomial formula above into 
an iterative step for the 2nd-order Taylor method for 
IVPs, giving wi+1 in terms of wi, ti, f, f ', and h.
Use your general expression to define the iterative 
step wi+1 for this IVP:

y’ = y – t       t0 = 0       y(0) = e + 1  
Leave your expression in terms of h (Why?)

Activity: 2nd Order Taylor Methods
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Answer: 2nd Order Taylor Methods
Euler’s method:

2nd order Taylor:

What are some drawbacks of this method?

y’ = y – t   t0 = 0   y(0) = e + 1
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The problem with f '

• Taylor methods gain more accuracy by using 
more derivatives of f
○ Recall: yn(t) = f n-1(t, y)

• But derivatives of f are rarely available
• Can we approximate  f '(t, y) using the values 

of f (t, y)? How?
• The resulting methods are the most popular 

IVP solvers: Runge-Kutta
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Chain rule
gives f '(ti, yi)

Use 2D Taylor series & the chain rule to find
f '(ti, yi), with Δt = h/2 and Δy = Δt f (ti, yi). Then 
plug f '(ti, yi) into the 2nd order Taylor method.

2nd order 
Taylor method 
needs f '(ti, yi)

2D Taylor series in y, t

Runge-Kutta Methods: RK2
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Same as chain rule!

2D Taylor series in y, t

Chain rule
gives f '(ti, yi)

By definition: f '(t, y) = dy/dt

Runge-Kutta Methods: RK2



The Cooper Union for the Advancement of Science and Art

Given f ', we can plug 
it into the 2nd order 
Taylor IVP method

RK2, aka "midpoint 
method for IVPs"

Runge-Kutta Methods: RK2
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Activity: RK2 in Python (10 minutes)

Copy your Python IVP solver  from before and 
change it to RK2:

Make a list of your approximate CEB at each step, 
and if you have time, plot your results vs t
How does the dependence on h change?

RK2

Euler's method
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Solution: RK2 in Python
RK2

Analytical =RK2 
solution 
is nearly 
exact at 
small dt

RK2 
solution 
does not 
go bad 
so fast
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Better Runge-Kutta?
• Different values for Δt and Δy in 2D Taylor 

make new IVP methods (F&B 185-187)
• Order 2 methods have global approximation 

error of O(h2)
• Most common RK method for solving IVPs is 

order 4, which uses the Taylor terms up to h4

• This method is called RK4 or just The 
Runge-Kutta Method for IVPs

• Given this description, what is the big-O of 
local & global error for RK4?
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"The" Runge-Kutta Method: RK4

• Like RK2 but more
• Global error O(h4)
• Requires 4 calls to 

f (t, y) per step
• Don't need f '(t, y)
• Usually the sweet 

spot for accuracy
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Why stop at RK4?
• The main cost for using an IVP algorithm is 

the calls to function f – fewer is better
• Euler needs 1 function evaluation per step
• RK4 needs 4
• RK4 is only useful if it allows step sizes over 

4x bigger, with the same accuracy (it does)
• Table on p. 188 of F&B shows that RK4 is 

superior to lower and higher order methods 
by this metric under reasonable assumptions
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Activity: Local Error in RK4

1. Use RK4 to estimate y(0.1) for this IVP:
y’ = y – t       t0 = 0       y(0) = e + 1       h = 0.1

2. Just as a demonstration of the error, 
compare your approximation to the 
exact answer y(t) = et+1 + t + 1 to get 
the actual local relative approximation 
error. Is it similar in scale to h5?
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Answer: Local Error in RK4
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SciPy generic IVP solver: solve_ivp
from scipy.integrate import solve_ivp

sol = solve_ivp(fun, (t0, t_end), [y0])

plt.plot(sol.t, sol.y[0], label='RK45')

• Uses RK4 but with dynamic h, with an error 
estimate based on RK5 - known as RK4(5)
○ Also has other, specialized methods

• Can solve for multi-dimensional y in f(t, y)
• Returns an object containing data about the 

solution, including sol.t, sol.y, & sol.success
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IVP Systems
• 1D problems are common, but so are IVPs 

with multiple outputs:

• We need output to be a vector instead of a 
scalar - u now instead of y

Where are the 
dependent 
variables here?
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Numerical Soln. of IVP Systems
Suppose your problem now looks like this:

Vector function
Vector function

a, not α

Same methods work!
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IVP Systems in Python
from scipy.integrate import solve_ivp

def fun(t, u):  # 3-D IVP

   C_A, C_B, C_C = u

   ... calculate du/dt here ...

   return dAdt, dBdt, dCdt

sol = solve_ivp(fun, (t0, t_final), u0)

plt.plot(sol.t, sol.y[0], label='[A]')

plt.plot(sol.t, sol.y[1], label='[B]')

plt.plot(sol.t, sol.y[2], label='[C]')
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Million+ Dimension IVP Systems
● IVPs often scale to millions of dimensions
● Example: molecular dynamics, every [x, y, z] 

of every atom is another dimension of w(t)
● Same techniques apply, just more compute
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1012+ Dimension IVP Systems
● Machine learning all known text / images
● Same techniques apply, just more compute
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Activity: Coding RK4
• Write a function that 

calculates the next 
step of RK4:

def rk4(f, ti, wi, h):
    ...your code...
    return w_next

• Try it with this IVP:
  def fun(t, w):
      return w - t
  t0 = 0; y0 = np.e+1

When you've got it, compare vs scipy.integrate.solve_ivp
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Pre-reading for next week

Predictor-corrector & adaptive methods for IVPs, 
higher-order IVPs, stiff IVPs:

PNM 22.6-7, F&B 5.6-8.

Verlet integration: 
https://www.algorithm-archive.org/contents/verlet_integra

tion/verlet_integration.html

https://www.algorithm-archive.org/contents/verlet_integration/verlet_integration.html
https://www.algorithm-archive.org/contents/verlet_integration/verlet_integration.html

