

ChE352 Numerical Techniques for Chemical Engineers Professor Stevenson

Lecture 15

Questions about pseudocode?

- Follows the structure of code
- Intended for human reading, not machine
- Must be clear and logically correct
- No points off for simple syntax errors
- Example:

```
x = [0, 1, 2] # comments help
for i in range(0, len(x)):
    print sign(x[i]) # eg +/-
```

The optimal topic to learn

- Many problems in engineering (and life?) can be phrased as optimization:
 - Optimal conditions for a reactor
 - Optimal choice of reactor for a plant
 - Optimal plant for the world economy
 - Optimal studying for your GPA

Other examples?

A friendly objective function

- QALY the lightbulb
- Mascot of EA (Effective Altruism)
- "Quality-Adjusted Life Years" are a popular objective function for public health charities

Optimization formalism

Optimization problems are typically stated as:

$$(P_1) \equiv \begin{array}{c} \text{minimize: } f(x) \\ \text{subject to: } x \in \Omega \subset \mathbb{R}^n \end{array}$$
 Constraint set

Where:
$$f: \mathbb{R}^n \to \mathbb{R}$$
, $\Omega = \{x: g(x) \le 0, h(x) = 0\}$

Optimization formalism

Optimization problems are typically stated as:

$$(P_1) \equiv \begin{array}{c} \text{minimize: } f(x) \\ \text{subject to: } x \in \Omega \subset \mathbb{R}^n \end{array}$$
 Constraint set

Where:
$$f: \mathbb{R}^n \to \mathbb{R}$$
, $\Omega = \{x: g(x) \le 0, h(x) = 0\}$

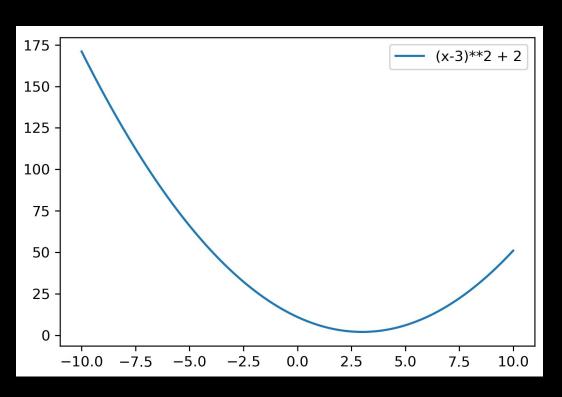
Or abbreviated as:

Problem
$$\min_{\text{name}} f(x)$$
 $f(x)$ $\text{s.t. } x \in \Omega$

Optimal value

$$OR \quad \boxed{\min_{x \in \Omega} \quad f(x) = v^*}$$

Simple Minimization Example



If we constrain this problem to some bounds, what does the Extreme Value Theorem say?

$$\overline{\min_{x \in \Omega} f(x)} \quad (unconstrained)$$

$$f(x) = (x-3)^2 + 2$$
, $\Omega = \mathbb{R}$

$$\underset{x \in \Omega}{\operatorname{arg\,min}} \quad f(x) = x^* = ?$$

$$v^* = ?$$

Optimal solution

What is constrained optimization?

- If Ω is all of \mathbb{R}^n , then we have an <u>unconstrained</u> optimization problem: $g(x) = h(x) = \emptyset$ (often we don't even write the Ω for unconstrained)
- If g(x) and/or h(x) are non-zero, then we have a constrained optimization problem
- Most problems in engineering have constraints
- There are tricks to turn constrained problems into unconstrained problems to solve them more easily

Multi-dimensional optimization

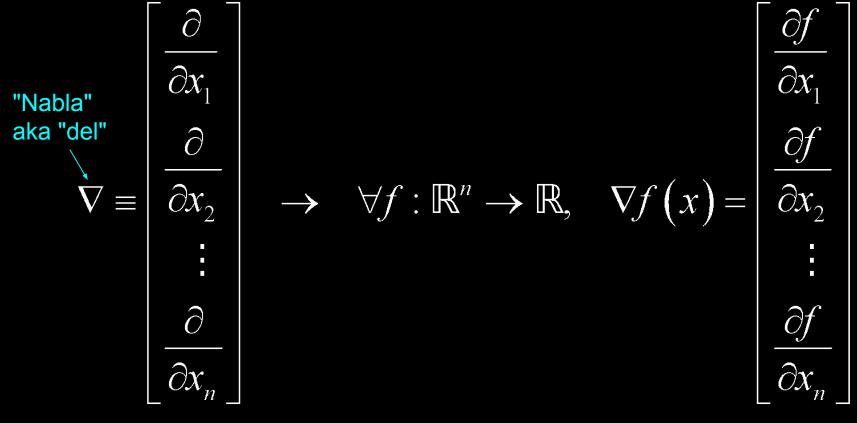
- Typically more than one variable to optimize
- Eg: why is this reactor this exact shape?
- Make a geometric representation of the shape (many variables)
- Optimize all variables together

Gradient-based optimization



- If we have the gradient $\nabla f(x)$, we can optimize functions up to **trillions** of variables
- Without the gradient, even 100 is tough

Defining the gradient



- First derivative for a scalar function in n dims
- Same shape (n) as the input vector x
- (What's the derivative of a <u>vector</u> function?)

Solve Linear Systems via Gradients

- We can pose the solution to Ax = b as an optimization problem of finding a vector r = Ax b which is zero (if A is invertible) or with norm(r) as small as possible
- We call r the <u>residual vector</u>:

$$\underset{r,x \in \mathbb{R}^n}{\text{minimize}} \quad ||r||$$

subject to:
$$r = Ax - b$$

Rearrange & simplify ||r|| ...

$$x^* = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad \|Ax - b\|_2 = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad \sqrt{(Ax - b)^T (Ax - b)}$$

$$\underset{x \in \mathbb{R}^n}{\operatorname{norms}}$$

$$= \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad (Ax - b)^T (Ax - b)$$

$$= \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad (Ax - b)^T Ax - (Ax - b)^T b$$

$$= \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad (Ax)^T Ax - b^T Ax - ((Ax)^T - b^T)b$$

$$= \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad x^T A^T Ax - b^T Ax - x^T A^T b + b^T b$$

Making an Equivalent Problem

Since we don't care what the actual value of the residual is, just where it is minimized, we can ignore the constant b^Tb:

$$x^* = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad x^T A^T A x - b^T A x - x^T A^T b - b^T b$$

$$= \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad x^T A^T A x - b^T A x - x^T A^T b$$

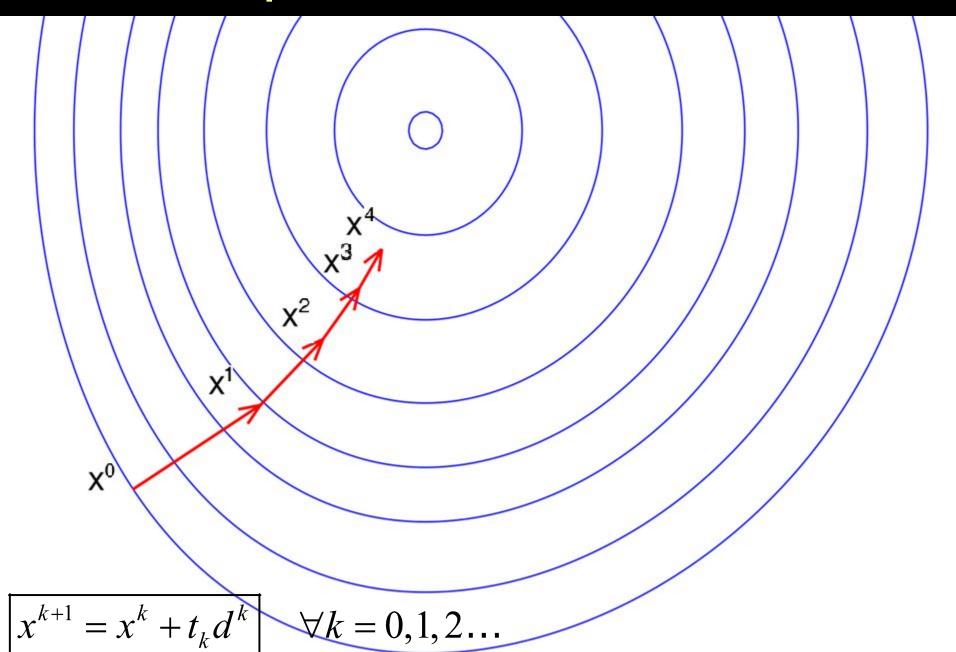
$$= \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad x^T A^T A x - 2b^T A x \qquad \text{Let } \mathbf{C} = \mathbf{2} \mathbf{A}^T \mathbf{b}$$

$$= \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad x^T P x - c^T x = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad f(x)$$

Iterative optimizers

$$x^{k+1} = x^k + t_k d^k$$

- x^{k+1} is the next guess
- x^k is the current guess
- d^k is the <u>search direction</u> (e.g. the gradient)
- t_k is the <u>step size</u>



Method of Steepest Descent

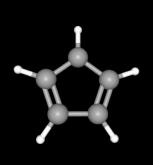
- The simplest gradient-based optimizer is steepest descent
- Search direction = negative of gradient

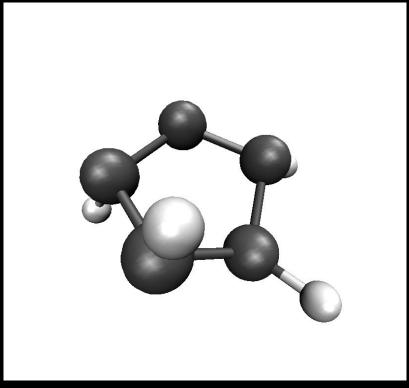
$$d^k = -\nabla f(x^k)$$

- This direction is guaranteed to be a <u>descent</u> <u>direction</u> (f goes down, by definition)
- Obviously effective: we go in the direction in which f goes down the fastest

Molecule shape discovery







- Preferred shape is near minimum energy ΔU (aka E)
 - Why just E not ΔG?
 - $-\Delta G = \Delta H T\Delta S$
 - $-\Delta H = \Delta U + P\Delta V$
 - $-\Delta G \approx \Delta H \approx \Delta U = E$
- Can calculate E(x) and ∇E(x) with quantum mechanics
- Given E(x) and ∇E(x), how can we find x_{min}?

Follow the forces ⇒ find x_{min}

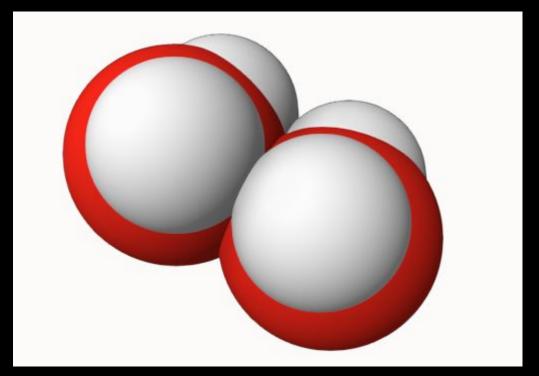
- Coords vector x represents all atoms
- Potential energy
 E(x) is a scalar
- ∇E(x) has same dimensions as x
- Each component of ∇E(x) is a force
- Follow the forces:
 gradient descent

X	=		•
Χ		У	Z

X	у	Z
2.80	0.45	0.01
2.00	-0.12	0.00
3.61	-0.12	0.03
2.30	-1.07	0.01
3.30	-1.07	0.00
2.80	1.07	0.02
1.41	0.06	0.00
4.20	0.06	0.01
1.94	-1.58	0.00
3.67	-1.58	0.01

Where do we get F?

https://www.kaggle.com/allaboutchemistry/xtb-water-ivp



To view, download the xyz file and open it using: https://molstar.org/viewer/

