
C H A P T E R

Numerical Integration and Differentiation

4.1 Introduction

Many techniques are described in calculus courses for the exact evaluation of integrals, but

exact techniques fail to solve many problems that arise in the physical world. For these we
need approximation methods of the type we consider in this chapter. The basic techniques

are discussed in Section 4.2, and refinements and special applications of these procedures

are given in the next six sections.
Section 4.9 considers approximating the derivatives of functions. Methods of this type

will be needed in Chapters 11 and 12 for approximating the solutions to ordinary and partial

differential equations. You might wonder why there is so much more emphasis on approx-
imating integrals than on approximating derivatives. Determining the actual derivative of

a function is a constructive process that leads to straightforward rules for evaluation. Al-
though the definition of the integral is also constructive, the principal tool for evaluating a
definite integral is the Fundamental Theorem of Calculus. To apply this theorem, we must

determine the antiderivative of the function we wish to evaluate. This is not generally a
constructive process, and it leads to the need for accurate approximation procedures.

In this chapter we will also discover one of the more interesting facts in the study of

numerical methods. The approximation of integrals—a task that is frequently needed—
can usually be accomplished very accurately and often with little effort. The accurate

approximation of derivatives—which is needed far less frequendy—is a more difficult

problem. We think that there is something sadsfying about a subject that provides good

approximadon methods for problems that need them, but is less successful for problems
that don’t.

4.2 Basic Quadrature Rules

The basic procedure for approximating the definite integral of a function / on the interval
[ a, b ] is to determine an interpolating polynomial that approximates / and then inte-
grate this polynomial. In this section we determine approximations that arise when some
basic polynomials are used for the approximations and determine error bounds for these
approximations.

The approximations we consider use interpolating polynomials atequally spaced points

in the interval [a ,b ].The first of these is the Midpoint rule , which uses the midpoint of
[a ,b ], ^ ( a +b ),as its only interpolation point. The Midpoint rule approximation is easy to

generate geometrically, as shown in Figure 4.1, but to establish the pattern for the higher-
order methods and to determine an error formula for the technique, we will use a basic
tool for these derivations, the Newton interpolatory divided-difference formula which we
discussed on page 76.

107

Copyright 20 I 2 Cengagc Learning . AI R.ghu Reserved May rsca be copied. scanned. or duplicated.'» whole or m pan. Doc to electronic rights. tone third party concent nu> be supprcsxd Trent the eBook and/or eChaptcnM . Editorial review h*>

deemed that any vupprc'-cd content dee*, not materials affect the overall learning experience. Cengage Leant ng reverses the right to rerrx'sr additional conceal at any time if subvcijjcni nglxs restrictions require it.



108 C H A P T E R 4 Numerical Integration and Differentiation

Figure 4.1
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Suppose that / e Cn+1[a , b ), where [a , b ] is an interval that contains all the nodes

*o,*i * • • . » xn.The Newton interpolator^ divided-difference formula states that the inter-
polating polynomial for the function / using the nodes xo, X\ y ...,x„ can be expressed in

the form

/>
0.1 nW = f [xo] + /[*0, X\ ] ( x - x0) + f [ x0, Xi , x2](x - x0)(x-X i) + —

+ f l x0,x l ,...,xn ](x - xo )(x - x\ ) - - (x - xn-\ ).
Since this is equivalent to the nth Lagrange polynomial, the error formula has the form

/(*) “ PoA nM
f (n+'\Hx ) )

in + 1)!
- x0)(x - Xi) - “ (x - x„),

where f (x) is a number, depending on x, that lies in the smallest interval that contains all
of X, X0, X1 , ... y Xn.

To derive the Midpoint rule we could use the constant interpolating polynomial with

x0 = ^ (a + b ) to produce

J f i x )dx % J f [x0 ]d x = f [x0 ] (b - a ) = f ib ~ af

But we could also use a linear interpolating polynomial with this value of xo and an arbitrary
value of X\.This is because the integral of the second term in the Newton interpolatory
divided-difference formula is zero for our choice of xo, independent of the value of x\, and

as such docs not contribute to the approximation:

[ fixo, *il(*- x0 )dx =
/[X°:- i]

(x - x0)2
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'
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4.2 Basic Quadrature Rules 109

We would like to derive approximation methods that have high powers of b — a in the error
term. In general, the higher the degree of the approximation, the higher the power of b-a in

the error term, so we will integrate the error for the linear interpolation polynomial instead

of the constant polynomial to determine an error formula for the Midpoint rule.
Suppose that the arbitrary x\ was chosen to be the same value as XQ.(In fact, this is the

only value that we cannot have for xi, but we will ignore this problem for the moment.)
Then the integral of the error formula for the interpolating polynomial Po.1(x ) has the form

[ h (x -x0)(x -X,) fh (x - Xo)
2

J 2
r (?(x))dx = J / (f (x))dx,

where, for each x, the number f (x) lies in the interval (a , b ).
The term (x — xo)2 does not change sign on the interval (a ,b), so the Mean Value

Theorem for Integrals (see page 8) implies that a number £, independent of x, exists in
(a, b) with

dx =gw b

a

/"(f ) Vb b + aY ( a
b +aY

6 y 2 J (a
2 )

/"(f ) (fc- fl)3 _ /"(f ),, _
\3

6 4 24
v 7 *

As a consequence, the Midpoint rule with its error formula has the following form:

Midpoint Rule

If / C ~ [a , b), then a number £ in (a , b ) exists with

jf f (x )dx = (b - a ) f ®(b - a )\

The invalid assumption, x\ = xo, that leads to this result can be avoided by taking x\

close, but not equal, to XQ and using limits to show that the error formula is still valid.

The Trapezoidal Rule

The Midpoint rule uses a constant interpolating polynomial disguised as a linear interpolat-
ing polynomial. The next method we consider uses a true linear interpolating polynomial,

one with the distinct nodes xo = a and x\ = b.This approximation is also easy to generate

geometrically, as shown in Figure 4.2 on the following page, and is aptly called the Trape-
zoidal, or Trapezium, rule. If we integrate the linear interpolating polynomial with xo = a
and x\ = b, we also produce this formula:

•b

J /[xo] 4- /[xo, Xj](x -x0 )dx = f [a ]x 4 f [a, b ]
(x - a )

2

2 -\ b

a

= f (a )(b - a ) 4
f (b ) - f ( a )

b — a

’ (b — a)2 (a — a )2'

2 2

f (a ) + f (b )

2
(b- a ).
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110 CH A PTER 4 Numerical Integration and Differentiation

Figure 4.2
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The error for the Trapezoidal rule follows from integrating the error term for PO, I (A:)

when XQ = a and x\ = b.Since ( x - Jto)(*-*i ) = ( x - a )( x - b ) is always negative in
the interval (a , b), we can again apply the Mean Value Theorem for Integrals. In this case
it implies that a number f in (a , b ) exists with

f h (x - a )(x - b ) /"(?) /•*, %

J ^
/ (£(x))dx = —— J (* - «)[(* — a ) — (b — d) ]dx

/"(f ) [ (*-a)3 ( x -a )\L J
‘ -r [ —3 2

—
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2

(b - a )

This gives the Trapezoidal rule with its error formula.

Trapezoidal Rule

If / e C 2 [a , b ] , then a number f in (a , b ) exists with

l
When we use the term trapezoid

we mean a four-sided figure that

has at least two of its sides

parallel. The European term for

this figure is trapezium. To further

confuse the issue, the European

word trapezoidal refers to a

four-sided figure with no sides

equal, and the American word for

this type of figure is trapezium.

We cannot improve on the power of b — a in the error formula for the Trapezoidal rule,

as we did in the case of the Midpoint rule, because the integral of the next higher term in

the Newton interpolatory divided-difference formula is

f f l xo> xu x2 ](x - x0 )(x - x\ )dx = f l xo,xu x2 ] f ( x - a )( x - b )d x .
J a J a

Since ( jc-a)(;t-6) < 0for all x in (a ,b ) y this term will not be zero unless f [ xo,*t , JC2] = 0.
As a consequence, theerror formulas for the Midpoint and theTrapezoidal rules both involve
(b - a)3, even though they are derived from interpolation formulas with error formulas

that involve b — a and (b — a )2 , respectively.
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4.2 Basic Quadrature Rules 111

Simpson's Rule

Next we consider an integration formula based on approximating the function / by a
quadratic polynomial that agrees with / at the equally spaced points x0 = a , x\ = ( a+b ) / 2,

and*2 = b . This formula is not easy to generate geometrically, although the approximation
is illustrated in Figure 4.3.

Figure 4.3
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To derive the formula, we integrate Po.uC*) -
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2 — a 2
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112 C H A P T E R 4 Numerical Integration and Differentiation

Thomas Simpson (1710-1761)

was a self-taught mathematician

who supported himself as a

weaver during his early years. His

primary interest was probability

theory, although in 1750 he

published a two-volume calculus

book entitled The Doctrine and

Application of Fluxions.

Simplifying this equation gives the approximation method known as Simpson’s rule:

s: f ( x )d x %
(b - a )

6 m+ 4/(^) +m .

An error formula for Simpson’s rule involving (b — a)4 can be derived by using the

error formula for the quadratic interpolating polynomial Po.\.i ( x ). However, similar to the
case of the Midpoint rule, the integral of the next term in the Newton interpolatory divided-
difference formula is zero. This implies that the error formula for the cubic interpolating

polynomial /*0,1,2,3(*) can be used to produce an error formula that involves (b — a )5 . When
simplified, Simpson’s rule with this error formula is as follows:

Simpson's Rule

If / C4[a , b\ % then a number £ in (a, b ) exists with

*b

[ f W d x
J a

(b - a )

6
f (a ) + 4/(*-£) + /(» /(4) (£)

2880
(b - a )5

This higher power of b-a in the error term makes Simpson’s rule significantly superior

to the Midpoint and Trapezoidal rules in almost all situations, provided that b- a is small.
This is illustrated in the following example.

Example 1 Compare the Midpoint, Trapezoidal, and Simpson’s rules approximations to

when /(*) is

(a) x2 (b) x4 (c) ( x + 1 )-1

(d) Vl + x2 (e) sinx (f) ex

J: f (x )dx

Solution On [0, 2] the Midpoint, Trapezoidal, and Simpson’s rules have the forms

Midpoint: f f ( x )d x % 2/(1), Trapezoidal: f f ( x )d x ft* /(0) + / (2),
Jo Jo

and

Simpson’s: jf f {x )d x «

^
[/(0) + 4/(1) + /(2)].

When f ( x ) = x 2 , they give

Midpoint: [ f ( x )d x « 2 - 1 = 2, Trapezoidal: [ f ( x )d x « 02 4- 22 = 4,
Jo Jo

1

and

Simpson’s: [*
f (x )d x *\[/ (0) + 4/ (1) + /(2)] = V + 4 • l2 + 22) =

JO 3 j 3

The approximation from Simpson’s rule is exact because its truncation error involves / (4),

which is identically 0 when f ( x ) = x2.
The results to three places for the functions are summarized in Table 4.1. Notice that,

in each instance, Simpson’s rule is significantly superior.
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4.2 Basic Quadrature Rules 113

Table 4.1 (a) (b) (c) (d) (e) (0

/(*) x 2 x 4 (X + 1)-' \/ l +*
2 sin JC e*

Exact value 2.667 6.400 1.099 2.958 1.416 6.389
Midpoint 2.000 2.000 1.000 2.818 1.682 5.436
Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389
Simpson’s 2.667 6.667 1.111 2.964 1.425 6.421

To demonstrate the error terms for the Midpoint, Trapezoidal, and Simpson’s methods,

we will find bounds for the errors in approximating >J 1 + x 2d x .With f ( x ) = (l +x2) l /2,

we have

= o+ijw’ “d = <TT^To bound the error of the Midpoint method, we need to determine maxo<*<2 I/”(*)! This

maximum will occur at either the maximum or the minimum valueof f" on[0, 2]. Maximum
and minimum values for/"on [0, 2]canoccuronly when x = 0,x = 2, or when / " (x ) = 0.

Since f '\x ) = 0 only when x = 0, we have

max l/"(x)| = max{|/"(0)|, |/"(2)|) = max{ l , 5
_

3/2} = 1 .

So a bound for the error in the Midpoint method is

/"(£ >
24

( b - a?

The actual error is within this bound, since |2.958 — 2.818| = 0.14. For the Trapezoidal
method, we have the error bound

/"(f )

12
( b - a? < ^(2 — 0)3 \ = 0.6,

and the actual error is 12.958 - 3.326| = 0.368. We need more derivatives for Simpson’s
rule:

/
(4)w =

12x2 — 3

( l + x2)^
and f { 5 ) ( x )

45* - 60x 3

(1 +*
2)9'2 '

Since f ( 5 ) ( x ) = 0 implies

0 = 45* - 60x 3 = 15x(3 - 4*
2),

f ( 4 ) ( x ) has critical points 0, ±\/3/2. Evaluating the fourth derivative at the critical points
and endpoints we have

l/ <4) (f ) l < max |/ (4)«| = max{|/ <4> (0)|, |/ <4)(N/3/2)|, |/ (4,
(2)|}

0<x<2

= max <
768V7 9V5 l

= 31
2401 * 125 f
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114 C H A P T E R 4 Numerical Integration and Differentiation

The error for Simpson’s rule is consequently bounded by

/ (4)(£)

2880
(b - a )5 3

- 2880
(2- 0)5 96

2880
0.03,

and the actual error is|2.958 — 2.964|= 0.006.
The error formulas all contain b — a to a power, so they are most effective when the

interval [a, bJ is small, so that b - a is much smaller than one. There are formulas that can
be used to improve the accuracy when integrating over large intervals, some of which arc
considered in the exercises. However, a better solution to the problem is considered in the

next section.

E X E R C I S E S E T 4 1

l.

2.

3.
4.
5.
6.

7.
8.
9.

10.

11.

12.

Use the Midpoint rule to approximate the following integrals.

a. [ x*dx
Jos

c.

e.

8-

f \.s

J x2 \ixxdx

['* 2x

Jx x2 — 4

l
dx

JC sin xdx

dx

e 'dx

. r *
J o X -4

4. /VJ o

r. r *
J o X 2 - 4

/•*/4

h. / I

Jo

dx

e3x sinlxdx

Use the error formula to find a bound for the error in Exercise 1, and compare the bound to the actual
error.

Repeat Exercise 1 using the Trapezoidal rule.
Repeat Exercise 2 using the Trapezoidal rule and the results of Exercise 3.
Repeat Exercise 1 using Simpson’s rule.

Repeat Exercise 2 using Simpson’s rule and the results of Exercise 5.

Other quadrature formulas with error terms are given by

(i) /* f ( x )dx = f [/(a ) + 3/(a + h )+ 3 f (a + 2h ) + f (b ) ] -£/<*>«). where h = ^;

(u) £“ f ( x )dx = f [/(a + h ) + /(a + 2/.)] + ^/"(*), where h =
Repeat Exercises 1 using (a) Formula (i) and (b) Formula (ii).
Repeat Exercises 2 using (a) Formula (i) and (b) Formula (ii).

The Trapezoidal rule applied to / ( x )dx gives the value 4, and Simpson’s rule gives the value 2.
What is /(1)?

The Trapezoidal rule applied to f ( x )dx gives the value 5, and the Midpoint rule gives the value

4. What value does Simpson’s rule give?

Find the constants c0, c\, and x\ so that the quadrature formula

f f ( x )dx = co/(0) + c,/(x,)
Jo

gives exact results for all polynomials of degree at most 2.
Find the constants x0, x ] t and C\ so that the quadrature formula

f ( x )dx = ^/(*0) + Ci/(•*!>

gives exact results for all polynomials of degree at most 3.
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4.3 Composite Quadrature Rules 115

13. Given the function / at the following values:

X 1.8 2.0 2.2 2.4 2.6

f ( x ) 3.12014 4.42569 6.04241 8.03014 10.46675

a. Approximate / ( x )dx using each of the following.

(i) the Midpoint rule (ii) the Trapezoidal rule (iii) Simpson’s rule

b. Suppose the data have round-off errors given by the following table:

X 1.8 2.0 2.2 2.4 2.6

Error in f ( x ) 2 x 10"6 -2 x 10“ -0.9 x 10“ -0.9 x 10“ 2 x 10“
Calculate the errors due to round-off in each of the approximation methods.

4.3 Composite Quadrature Rules

Piecewise approximation is often

effective. Recall that this was

used for spline interpolation.

The basic notions underlying numerical integration were derived in the previous section,

but the techniques given there are not satisfactory for most problems. We saw an example of

this at the end of that section, where the approximations were poor for integrals of functions

on the interval [0, 2]. To see why this occurs, let us consider Simpson’s method, generally

the most accurate of these techniques. Assuming that / e C4[a , b ),Simpson’s method with
its error formula is given by

f f ( x )dx /(a) + 4/(^) + /(t)
(b- a )5

2880
/ (4)(£)

= + 4/(a + h ) + /00]-^/W (?)

where h = (b - a ) / 2 and f lies somewhere in the interval (a , b ).Since / e C4[a , b]

implies that / (4) is bounded on [a , b\t there exists a constant M such that|/ (4>(JC)| < M
for all x in [a , b\. As a consequence,

*1/00 + 4/(.+ *)+ /(»>]- f f ( x )dx
h5

—/<4)($)
90 J

M , <
< —h5.

90

The error term in this formula involves M , a bound for the fourth derivative of /, and

h5
t so we can expect the error to be small provided that

• the fourth derivative of / is not erratic, and

• the value of h = b — a is small.

The first assumption we will need to live with, but the second might be quite unreasonable.
There is no reason, in general, to expect that the interval [a ,b] over which the integration

is performed is small, and if it is not, the h5 portion in the error term will likely dominate

the calculations.
We circumvent the problem involving a large interval of integration by subdividing the

interval [a, b ] into a collection of intervals that are sufficiently small so that the error over
each is kept under control.
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