Numerical Integration and Differentiation

4.1 Introduction

Many techniques are described in calculus courses for the exact evaluation of integrals, but
exact techniques fail to solve many problems that arise in the physical world. For these we
need approximation methods of the type we consider in this chapter. The basic techniques
are discussed in Section 4.2, and refinements and special applications of these procedures
are given in the next six sections.

Section 4.9 considers approximating the derivatives of functions. Methods of this type
will be needed in Chapters 11 and 12 for approximating the solutions to ordinary and partial
differential equations. You might wonder why there is so much more emphasis on approx-
imating integrals than on approximating derivatives. Determining the actual derivative of
a function is a constructive process that leads to straightforward rules for evaluation. Al-
though the definition of the integral is also constructive, the principal tool for evaluating a
definite integral is the Fundamental Theorem of Calculus. To apply this theorem, we must
determine the antiderivative of the function we wish to evaluate. This is not generally a
constructive process, and it leads to the need for accurate approximation procedures.

In this chapter we will also discover one of the more interesting facts in the study of
numerical methods. The approximation of integrals—a task that is frequently needed—
can usually be accomplished very accurately and often with little effort. The accurate
approximation of derivatives—which is needed far less frequently—is a more difficult
problem. We think that there is something satisfying about a subject that provides good
approximation methods for problems that need them, but is less successful for problems
that don't.

4.2 Basic Quadrature Rules

The basic procedure for approximating the definite integral of a function f on the interval
[a, b] is to determine an interpolating polynomial that approximates f and then inte-
grate this polynomial. In this section we determine approximations that arise when some
basic polynomials are used for the approximations and determine error bounds for these
approximations.

The approximations we consider use interpolating polynomials at equally spaced points
in the interval [a, b]. The first of these is the Midpoint rule, which uses the midpoint of
[a, b], %(a + b), as its only interpolation point. The Midpoint rule approximation is easy to
generate geometrically, as shown in Figure 4.1, but to establish the pattern for the higher-
order methods and to determine an error formula for the technique, we will use a basic
tool for these derivations, the Newton interpolatory divided-difference formula which we
discussed on page 76.
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Figure 4.1

CHAPTER 4 = Numerical Integration and Differentiation

YA
y=fx)
Ty = Py(x)

Suppose that f € C"*'[a, b], where [a, b] is an interval that contains all the nodes
Xg, X1, ..., X;. The Newton interpolatory divided-difference formula states that the inter-
polating polynomial for the function f using the nodes xg, x1, ..., X, can be expressed in
the form

Po..n(®) = flxol + flxo, 110 = x0) + flxo, x1, x2](x — x0) (x — 1) +- -
+ flxg, X1y -0 2] — 2x0) (x — 1) -+ (x — x-1).
Since this is equivalent to the nth Lagrange polynomial, the error formula has the form
i (359))
(n+ 1!

where &(x) is a number, depending on x, that lies in the smallest interval that contains all
of x, x0, X1, v« s X

To derive the Midpoint rule we could use the constant interpolating polynomial with
xg = 3(a+ b) to produce

&)= Pog,.ulx) = (x —xo)(x —x1) - (x — x4),

a+b
2

But we could also use a linear interpolating polynomial with this value of x; and an arbitrary
value of x;. This is because the integral of the second term in the Newton interpolatory
divided-difference formula is zero for our choice of xp, independent of the value of x, and
as such does not contribute to the approximation:

b b
f F@)dx ~ f Flxalds = Flxol(s —a) = f( )(b-a).

b
f[-"-'uzn-t:] (x— xu)z]n

b
f Slxo, x11(x — xo)dx

_ filu.xl](x_a+b)2 ’

- 2 2 5

_ flxe,xi] b a+b\? a+b\’
-2 )
_ flxosxl|fb—a # a—b\> N
-5 - () |
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4.2 Basic Quadrature Rules 109

We would like to derive approximation methods that have high powers of b — a in the error
term. In general, the higher the degree of the approximation, the higher the powerof b—a in
the error term, so we will integrate the error for the linear interpolation polynomial instead
of the constant polynomial to determine an error formula for the Midpoint rule.

Suppose that the arbitrary x; was chosen to be the same value as x,. (In fact, this is the
only value that we cannet have for x, but we will ignore this problem for the moment.)
Then the integral of the error formula for the interpolating polynomial Py, (x) has the form

1 = =5
[ 0= g par = f G2 s,

where, for each x, the number £ (x) lies in the interval (a, b).

The term (x — Jrg)Z does not change sign on the interval (a, b), so the Mean Value
Theorem for Integrals (see page 8) implies that a number £, independent of x, exists in
(a, b) with

2 7 b
f (x f,,(,’_.( Nz = f'E) f (x— xo) _f'® (x—xnf]

6

_rE b+a b+a\?
=76 {(b' 2 )'("' 2 )]
_rOe-a _ e

6 4 T 24
As a consequence, the Midpoint rule with its error formula has the following form:

B—a).

Midpoint Rule
If fe C?[a, b], then a number £ in (a, b) exists with

atb\ . f'®)
) T

f Fx)dx = (b~ Jf( ®-a)’.

The invalid assumption, x; = x;, that leads to this result can be avoided by taking x,
close, but not equal, to xo and using limits to show that the error formula is still valid.

The Trapezoidal Rule

The Midpoint rule uses a constant interpolating polynomial disguised as a linear interpolat-
ing polynomial. The next method we consider uses a true linear interpolating polynomial,
one with the distinct nodes xy = @ and x; = b. This approximation is also easy to generate
geometrically, as shown in Figure 4.2 on the following page, and is aptly called the Trape-
zoidal, or Trapezium, rule. If we integrate the linear interpolating polynomial with x, = a
and x; = b, we also produce this formula:

b (x a}?. b
f flxol + flxo, x1](x — xp)dx = [f[a]x + fla,B] = 5 }

_ f{b] f@[k—a)P (a—a)
F@a - b—a [ 2 2 }
_ @ er IO,
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Figure 4.2

Trapezoidal Rule

CHAPTER 4 = Numerical Integration and Differentiation

Y

| ]
a=ux x==éb x

The error for the Trapezoidal rule follows from integrating the error term for Py (x)
when x; = @ and x, = b. Since (x — xp)(x — x1) = (x — a@)(x — b) is always negative in
the interval (a, b), we can again apply the Mean Value Theorem for Integrals. In this case
it implies that a number £ in (a, b) exists with

b . Ly i b
f Wf’{&(x))dx = %f (x —a)[(x —a) — (b—a)ldx

f”(E) [(x —a) - a)2

b

(- d]}

a

" RTIELY i
_re[e-o e 2a) (b_a)]

_ f"(e) £, _

This gives the Trapezoidal rule with its error formula.

If f € C2[a, b], then a number & in (a, b) exists with

f" foris=1@HIO )

FE .
L b-a).

When we use the term trapezoid
we mean a four-sided figure that
has at least two of its sides
parallel. The European term for
this figure is trapezium. To further
confuse the issue, the European
waord trapezoidal refers to a
four-sided figure with no sides
equal, and the American word for
this type of figure is trapezium.
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‘We cannot improve on the power of b — a in the error formula for the Trapezoidal rule,
as we did in the case of the Midpoint rule, because the integral of the next higher term in
the Newton interpolatory divided-difference formula is

b b
j Slxo, x1, 22](x — x0) (x — x1)dx = f[xu.-tl‘xz]f (x —a)(x — b)dx.

Since (x—a)(x—b) < Oforall x in (a, b), this term will not be zero unless f[xp, x;, x2] = 0.
As aconsequence, the error formulas for the Midpoint and the Trapezoidal rules both involve
(b — a)?, even though they are derived from interpolation formulas with error formulas
that involve b — a and (b — a)?, respectively.

deemed S Ry supprEssed content dees ool maxtlaly affoa the overll leaming expericnce. Cengage Loaming reserves the ripht i remove additinnal contee & any 1time f subrseguent rights restrictons rogquire [k



42 Basic Quadrature Rules m

Simpson's Rule

Next we consider an integration formula based on approximating the function f by a
quadratic polynomial that agrees with f at the equally spaced points xp = a, x; = (a+b)/2,
and x; = b. This formula is not easy to generate geometrically, although the approximation

is illustrated in Figure 4.3.
Figure 4.3
Y4
y=J(x)
¥y =Py
o n==5 x

To derive the formula, we integrate Py »(x).

b
/ Po, l‘z(x)d-t

- [{rose ot oo

[ﬂah”[ a+b] (x—za)z]:

+f[a. %b]f (x-a)[(x—a)+( -?)]ax

a+h 2
= f@b-a)+ (ME f@) ® 2‘,3,
L —da

LR~ fla [ -a) | (-a)?(a—b ¥
b—a 3 2 ( 2 )]

tb—a){f(a) +£(*3) - r@)

+( 1 )[f(b}—f(“—gﬁi f(g—?)—f(a)} [(b-a)i_(b-aya]
b

b - =
e e 3 4

[f(b) zf(" “’) + fG )] L

(b—a)f(a-H,) +

®-
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12 CHAPTER 4 = Numerical Integration and Differentiation

Thomas Simpson (1710-1761) Simplifying this equation gives the approximation method known as Simpson’s rule:
was a self-taught mathematician
(b—a)

who supported himself as a ; a+b
i f flrydx ~ = [f(a] +4f( 5 ) + f(b)] :

weaver during his early years. His

primary interest was probability

theory, although in 1750 he An error formula for Simpson’s rule involving (b — a)* can be derived by using the

published a two-volume caleulus  error formula for the quadratic interpolating polynomial Py 2(x). However, similar to the

book entitled The Doctrine and case of the Midpoint rule, the integral of the next term in the Newton interpolatory divided-

Application of Fluxions. difference formula is zero. This implies that the error formula for the cubic interpolating
polynomial Py 2.3(x) can be used to produce an error formula that involves (b —a)*. When
simplified, Simpson's rule with this error formula is as follows:

Simpson'’s Rule
If f € C%[a, b], then a number & in (a, b) exists with

(b—a)
6

fO®)
2880

a+b
2

(b —a)’.

/ "ot [f(a) +4f( ) +fo)| -

This higher power of b—a in the error term makes Simpson'’s rule significantly superior
to the Midpoint and Trapezoidal rules in almost all situations, provided that b — a is small.
This is illustrated in the following example.

2
Example 1 Compare the Midpoint, Trapezoidal, and Simpson’s rules approximations to f fx)dx
0

when f(x) is
(@ ? (b) x* © &+n!
(d) 1-+4+x2 (e) sinx H e

Solution On [0, 2] the Midpoint, Trapezoidal, and Simpson’s rules have the forms

2 2
Midpoint: f f(x)dx = 2f(1), Trapezoidal: / Fx)dx = f(0)+ f(2),
0 0
and
i 1
Simpson’s: f flx)dx = i[f(ﬂ} +4f(1) + f(2)].
0
When f(x) = x?, they give

2 2
Midpoint; f f(x)dx~2.1=2, Trapezoidal: f fx)dx = 0% +22 =4,
(¢] 0

and

2
Simpson’s: f fx)dx = l[f{l}) +4f()+ f(2)] = 1({12 +4.1242) = §_
0 3 3 3

The approximation from Simpson’s rule is exact because its truncation error involves £,
which is identically 0 when f(x) = x2.

The results to three places for the functions are summarized in Table 4.1. Notice that,
in each instance, Simpson’s rule is significantly superior. |

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
deemed S Ry supprEssed content dees ool maxtlaly affoa the overll leaming expericnce. Cengage Loaming reserves the ripht i remove additinnal contee & any 1time f subrseguent rights restrictons rogquire [k



42 Basic Quadrature Rules 13

Table 4.1 (a) ®) © @) © ®
f(x) % ¥ G+ Vita? sinx e
Exact value 2.667 6.400 1.099 2958 1416 6.380
Midpoint 2.000 2.000 1.000 2.818 1.682 5436
Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389
Simpson’s 2.667 6.667 1.111 2.964 1.425 6421

To demonstrate the error terms for the Midpoint, Trapezoidal, and Simpson’s methods,
we will find bounds for the errors in approximating J';,z A1 4+ x2dx. With f(x) = (14+x%)V2,
we have

—3x

f) = As

) and f"(x) =

1
(A +x9)12° T+
To bound the error of the Midpoint method, we need to determine maxy<,, | f"(x)|. This
maximum will occur at either the maximum or the minimum value of /" on [0, 2]. Maximum
and minimum values for " on [0, 2] canoccuronly whenx = 0,x = 2,orwhen f"(x) = 0.
Since f"(x) = 0 only when x = 0, we have

max | £(x)| = max{| f"©), | @I} = max{1,57} = 1.
So a bound for the error in the Midpoint method is

T VR [ S G
‘ 24 b—a) 524(2 0) —3—0.3.

The actual error is within this bound, since |2.958 — 2.818| = 0.14. For the Trapezoidal
method, we have the error bound

£® J_ 1 s 2
- b— = =2-0"==-=056,
2 P @)=gl-0=3
and the actual error is [2.958 — 3.326| = 0.368. We need more derivatives for Simpson’s
rule:
12x2 -3 45x — 60x?
@ (ry = d %) = )
IO —mp el 0=

Since f®(x) =0 implies
0 = 45x — 60x* = 15x(3 — 4x%),

F®(x) has critical points 0, ++/3/2. Evaluating the fourth derivative at the critical points
and endpoints we have

1F9@)] < max | £900) = max{| FO O £ O3/, 1fO @}
{ 768+/7 9./5}
= max

| =3, 2401 ' 125
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114 CHAPTER 4 = Numerical Integration and Differentiation

The error for Simpson’s rule is consequently bounded by
96

AR G) 5 3 5o A
2880 C 79| = 28502~ = 2550 = 00>
and the actual error is |2.958 — 2.964| = 0.006.

The error formulas all contain b — a to a power, so they are most effective when the
interval [a, b] is small, so that b — a is much smaller than one. There are formulas that can
be used to improve the accuracy when integrating over large intervals, some of which are
considered in the exercises. However, a better solution to the problem is considered in the
next section.

EXERCISE SET 42

1.  Use the Midpoint rule to approximate the following integrals.

i 05 o
a. / x*dx b. f dx
0.5 o x—4

15 1
. f Inxdx d. f xle dx
1 1]
16 9N 0.35 9
b d f. —d.
¢ | X2 =4 o ]; x2=4 i
P} x4
g f xsinxdx h. f &% sin 2x dx
o 0

2, Use the error formula to find a bound for the emror in Exercise 1, and compare the bound to the actual
erTor.

3. Repeat Exercise 1 using the Trapezoidal rule.

4,  Repeat Exercise 2 using the Trapezoidal rule and the results of Exercise 3.
5.  Repeat Exercise 1 using Simpson’s rule.

6.  Repeat Exercise 2 using Simpson's rule and the results of Exercise 5.

Other quadrature formulas with error terms are given by
@ ff flxydx = L[f(@)+3f(a+h)+3f(a+2h) + f(b)] - %f“’(&). where h = 522;
() [’ fe)dx = 2[f@+h)+ fla+2h)]+ 2 f(E), where h = 22,
£ Repeat Exercises 1 using (a) Formula (i) and (b) Formula (i1).
8. Repeat Exercises 2 using (a) Formula (i) and (b) Formula (ii).
9.  The Trapezoidal rule applied to j;z f(x)dx gives the value 4, and Simpson's rule gives the value 2.
What is f(1)?
10. The Trapezoidal rule applied to f:' f(x)dx gives the value 5, and the Midpoint rule gives the value
4. What value does Simpson's rule give?
11. Find the constants ¢y, ¢, and x, so that the quadrature formula

i
f flx¥dx = o f(O) + e, fxy)
[

gives exact results for all polynomials of degree at most 2.
12, Find the constants x,, x;, and ¢, so that the quadrature formula

f 1
ﬁ flx)dx = Ef(:ru)+c|f(x1)

gives exact results for all polynomials of degree at most 3.
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43 Composite Quadrature Rules 115

13.  Given the function f at the following values:

x | 1.8 | 20 | 22 j 24 | 26

F@) | 312014 | 442569 | 6.04241 | 8.03014 | 1046675

a. Approximate [’ f(x)dx using each of the following.
(i) theMidpointrule (ii) the Trapezoidal rule  (iii) Simpson's rule
b.  Suppose the data have round-off errors given by the following table:

x |18 |20 | 22 | 24 | 26
Errorin f(x) | 2x 1078 | —2x 107 | —0.9x 10" | ~09x 10 | 2x 108
Calculate the errors due to round-off in each of the approximation methods,

- : 4.3 Composite Quadrature Rules

The basic notions underlying numerical integration were derived in the previous section,
but the techniques given there are not satisfactory for most problems. We saw an example of
this at the end of that section, where the approximations were poor for integrals of functions
on the interval [0, 2]. To see why this occurs, let us consider Simpson's method, generally
the most accurate of these techniques. Assuming that f € C*[a, b], Simpson’s method with

its error formula is given by
Piecewise approximation is often

effective. Rﬂ_aca.l_l that lhis.wa.s b b—a a+b b— a}i i
used for spline interpolation, l flx)dx = 6 [f(a] +4f( 5 ) + f{b)] = m—f &)
h W )
=§[f(a)+4f(a+h)+f(b)]—%f ()

where h = (b — a)/2 and & lies somewhere in the interval (a, b). Since f € C%[a, b]
implies that £ is bounded on [a, b], there exists a constant M such that | f¥(x)] < M
for all x in [a, b]. As a consequence,

U@ +as +*)+f(b)l—fbf( )d —|’f-ff“’(5)|<‘if.kf
Tl @ | f@dx| =55 = 5"

The error term in this formula involves M, a bound for the fourth derivative of f, and
h*, so we can expect the error to be small provided that

® the fourth derivative of f is not erratic, and

o the value of h = b — a is small.

The first assumption we will need to live with, but the second might be quite unreasonable.
There is no reason, in general, to expect that the interval [a, b] over which the integration
is performed is small, and if it is not, the > portion in the error term will likely dominate
the calculations.

We circumvent the problem involving a large interval of integration by subdividing the
interval [a, b] into a collection of intervals that are sufficiently small so that the error over
each is kept under control.
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