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b. Solve this system using n = 10,50, and 100.
c. Change the probabilities to a and 1 - a for movement to the left and right, respectively, and

derive the linear system similar to the one in (a).
d. Repeat (b) using the system in (c) with a = ^.5. The forces on the bridge truss shown here satisfy the equations in the following table:

:
f*/.

h

7T hh V
4Fx 6o* * *

A 2 h /5

10.000 N

Fi

Joint Horizontal Component Vertical Component

(D -fi + ^/i + /2 = o f /, - F2 = 0

® -^/. + ^/4 = 0 -f /.- /3- 1/4 = 0

® — f l + /5 = 0 /3- 10,000 = 0

@ —£/4 - /5 = 0 |/«- F,= 0

This linear system can be placed in the matrix form

-1 0 0 f 1 0 0

0 -1 0 ^ 0 0 0

0 0 -1 0 0 0 i

0 0 0 0 -1 i

0 0 0 0 -1 0 0

0 0 0 0 0 1 0

0 0 0 -^ 0 0 ^0 0 0 0 0 0 -^

Fl
'

0
F2 0
F3 0

/« 0

/2 0

/3 10,000

/4 0

/5 J 0

Approximate the solution of the resulting linear system to within 10 2 in the lx norm using as initial
approximation the vector all of whose entries are Is and (i) the Gauss-Seidel method, (ii) the Jacobi
method, and (iii) the SOR method with o = 1.25.

7.6 Error Bounds and Iterative Refinement

This section considers the errors in approximation that are likely tooccur when solving linear
systems by both direct and iterative methods. There is no universally superior technique

for approximating the solution to linear systems, but some methods will give better results

than others when the matrix satisfies certain conditions.
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7.6 Error Bounds and Iterative Refinement 303

It seems intuitively reasonable that if x is an approximation to the solution x of Ax = b
and the residual vector, defined by

r = b - AS,

has the property that if ||r|| is small, then ||x — S|| should be small as well. This is often the
case, but certain systems, which occur quite often in practice, fail to have this property.

Example 1 The linear system Ax = b given by

1 2
1.0001 2

x\

*2

3
3.0001

has the uniquesolution x = (1, 1)'. Determine the residual vector for the poor approximation

x = (3, -o.oooiy .

Solution We have

r = b - Ax =
3 1 2 1 [ 3 0.0002

3.0001 1.0001 2 J [ -0.0001 0

so Hrlloc = 0.0002. Although the norm of the residual vector is small, the approximation

x = (3, -0.0001V is obviously quite poor; in fact, ||x — £||oo = 2.

The difficulty in Example 1 is explained quite simply by noting that the solution to the
system represents the intersection of the lines

l\ : *1 + 2*2 = 3 and h: 1.0001*1 + 2*2 = 3.0001.

The point (3, —0.0001) lies on /2, and the lines are nearly the same. This means that
(3, —0.0001) also lies close to the line /1, even though it differs significantly from the

solution of the system, which is the intersection point (1, 1). (See Figure 7.6.)

Figure 7.6

X 2

\a i)

1 *

NSJ(3,0)

1
(3,-0.0001uN*1 4 *1

Example 1 was clearly constructed to show the difficulties that might—and, in fact,

do—arise. Had the lines not been nearly coincident, we would expect a small residual vector

to imply an accurate approximation. In the general situation, wecannot rely on the geometry

of the system to give an indication of when problems might occur. We can, however, obtain

this information by considering the norms of the matrix and its inverse.
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304 C H A P T E R 7 Iterative Methods for Solving Linear Systems

Residual Vector Error Bounds

If x is an approximation to the solution of Ax = b and A is a nonsingular matrix, then

for any natural norm,

II*-*11 lib- >4*||- 1|A"11|

and

II* — *11 „ .-I „ l|b- i4x||———— < ||A|| • ||A ||——— , provided x ^ 0 and b ^ 0.

This result implies that ||A
_
1||and \\ A \\ • ||A

_
I|| provide an indication of the connec-

tion between the residual vector and the accuracy of the approximation. In general, the

relative error ||x — x ||/||x|| is of most interest. Any convenient norm can be used for this
approximation; the only requirement is that it be used consistently throughout.

Condition Numbers

The condition number, K (A), of the nonsingular matrix A relative to a norm || •|| is

*(A) = IIAIHIA-' ll.

Note that for any nonsingular matrix A and natural norm || • ||,

l = ||/|=||AA-,||< ||A||.||A-,||= ^ (A).
With this notation, we can reexpress the inequalities in the previous result as

and
x- x||

x
< K ( A )

lib- Ax||

llbll

A matrix A is well-behaved (called well-conditioned) if tf (A) is close to 1, and A
is not well-behaved (called ill-conditioned ) when K ( A ) is significantly greater than 1.
Conditioning in this instance refers to the relative security that a small residual vector

implies a correspondingly accurate approximate solution.

Example 2 Determine the condition number for the matrix

A — [ 1 2

1.0001 2

Solution We saw in Example 1 that the very poor approximation (3, —0.0001)' to the exact

solution (1, 1)' had a residual vector with small norm, so we should expect the condition

number of A to be large. We have||A|| = max{|l|+ |2|, 11.0011 +|2|} = 3.0001, which

would not be considered large. However,

so I IA-' l loo = 20000,

and for the infinity norm,

Koo( A ) = (20000)(3.0001) = 60002.

The size of the condition number for this example should certainly keep us from making

hasty accuracy decisions based on the residual of an approximation.

-10000 10000
5000.5 -5000
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7.6 Error Bounds and Iterative Refinement 305

The program ITREF74

implements the Iterative

Refinement method.

Illustration

In MATLAB, the condition number /^(A) for the matrix in Example 2 can be com-
puted using the command cond. To obtain the lx condition number, use the command

cond (A , Inf )

MATLAB responds with

arts = 6.000199999999003* + 004

The default for cond is the l2 condition number, and either of the commands cond (A) or

cond (A , 2) gives

K 2 ( A ) = 5.000100002987370* + 004.

Iterative Refinement

The residual of an approximation can also be used to improve the accuracy of the approx-
imation. Suppose that x is an approximation to the solution of the linear system Ax = b

and that r = b- Ax is the residual vector associated with x. Consider y, the approximate

solution to the system Ay = r. Then

y % A“*r = A-1(b- Ax) = A “!b- A"1 Ax = x- x

So

x % i + y.

This new approximation x + y is often much closer to the solution of Ax = b than

is x, and y is easy to determine because it involves the same matrix, A, as the original

system. This technique is called iterative refinement, or iterative improvement, and is
shown in the following Illustration. To increase accuracy, the residual vector is computed

using double-digit arithmetic.

The linear system given by

'

3.3330 15920 -10.333
'

-*1
"

15913
'

2.2220 16.710 9.6120 *2 — 28.544
1.5611 5.1791 1.6852 . *3 . 8.4254

has the exact solution x = (1, 1, 1)'.
Using Gaussian elimination and five-digit rounding arithmetic leads successively to

the augmented matrices

and

'

3.3330 15920 -10.333 : 15913
'

0 -10596 16.501 : 10580
0 -7451.4 6.5250 : -7444.9

'

3.3330 15920 -10.333 : 15913
'

0 -10596 16.501 : -10580
0 0 -5.0790 : -4.7000

The approximate solution to this system is

x = (1.2001, 0.99991, 0.92538)'.
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306 C H A P T E R 7 Iterative Methods for Solving Linear Systems

The residual vector corresponding to x is computed in double precision to be

r = b - Ax

15913
'

3.3330 15920 -10.333
‘

1.2001

— 28.544 — 2.2220 16.710 9.6120 0.99991
8.4254 1.5611 5.1791 1.6852 0.92538

15913
‘ '

15913.00518
'

-0.00518

= 28.544 — 28.26987086 = 0.27412914
8.4254 8.611560367 -0.186160367

so

Moo = ||b-Atloo = 0.27413.

To use iterative refinement to improve this approximation, we now solve the system

Ay = r fory. Using five-digit arithmetic and Gaussian elimination, theapproximate solution
y to the equation Ay = r is

y = (-0.20008, 8.9987 x 1(T3, 0.074607)'

and we have the improved approximation to the system Ax = b given by

x + y = (1.2001, 0.99991, 0.92538)' + (-0.20008, 8.9987 x HT3, 0.074607)'

= (1.0000, 1.0000, 0.99999)'.

This approximation has the residual vector

IlfHoc = lib- A(x H- y)!!^ = 0.0001.

If we were continuing the iteration processes, we would, of course, use x -f y as our starting

values rather than x.

E X E R C I S E S E T 7 . 6

1. Compute the condition numbers of the following matrices.

1 I 1 3.9 1.6
a. 2 3

i I
b.

6.8 2.9
3 4 J

1 2
A

1.003 58.09
c.

1.0001 2
Q.

5.550 321.8

1 -1 -1
' ‘

0.04 0.01 --0.01
'

e. 0 1 -1 f. 0.2 0.5 -0.2
0 0 -1 1 2 4

2. The following linear systems Ax = b have x as the actual solution and x as an approximate solution.

Using the results of Exercise 1, compute||x — *11« and

/^(A)
||b - AX||*

IIAHoc
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7.6 Error Bounds and Iterative Refinement 307

1 1 1

“•
2*1 +

3^ = 6 3 -
1 1 1

3*1 +
4*= IS*

x = Q.-g) . « = (0.142,-0.166)'.

b. 3.9jC|+ 1.6x2 = 5.5,

6.8xi + 2.9*2 = 9.7,

x = (1, 1)', x = (0.98, 1.1)'.

c. *, + 2*2 = 3,

1.0001*! + 2*2 = 3.0001,

x = (1, 1)', * = (0.96, 1.02)'.
d. 1.003*, + 58.09*2 = 68.12,

5.550*, + 321.8*2 = 377.3,
x = (10, 1)'. x = (— 10, 1)'.

e. *i — *2 — *3 = 2JT,

*2 “ *3 = 0,

—*3 = 71,
x = (0,-71,-7T)', S = (-0.1,-3.15, -3.14)'.

f. 0.04*, + 0.01*2 - 0.01*3 = 0.06,

0.2*, + 0.5*2

_
0.2*3 = 0.3,

*, + 2*2 + 4*3 = 11,

x = (1.827586, 0.6551724, 1.965517)', * = (1.8, 0.64, 1.9)'.
3. The linear system

1 2 3
[ 1.0001 2 *2 .

3.0001

has the solution (1, 1)'. Change A slightly to

1 2
0.9999 2

and consider the linear system

1 2 1 _ [ 3
0.9999 2 *2 J [ 3.0001

Compute the new solution using five-digit rounding arithmetic, and compare the change in A to the

change in x.

4. The linear system Ax = b given by

1 2 X\ 3
1.00001 2 *2 . 3.00001

has the solution (1, 1)'. Use seven-digit rounding arithmetic to find the solution of the perturbed

system

1 2 1 [ 1 _ 3.00001
1.000011 2 J l *2 J 3.00003

and compare the change in A and b to the change in x.

5. (i) Use Gaussian elimination and three-digit rounding arithmetic to approximate the solutions to the

following linear systems, (ii) Then use one iteration of iterative refinement to improve the approxi-
mation, and compare the approximations to the actual solutions.
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308 C H A P T E R 7 Iterative Methods for Solving Linear Systems

a. 0.03*1 + 58.9*2 = 59.2
5.31*, - 6.10*2 = 47.0
Actual solution (10, 1)'.

b. 3.3330*i + 15920*2 + 10.333*3 = 7953
2.2220*, + 16.710*2 + 9.6120*3 = 0.965

-1.5611*, + 5.1792*2 - 1.6855*3 = 2.714
Actual solution (1 , 0.5,-1)'.

c. 1.19*, + 2.11*2 - 100*3 + *4 = 1.12
14.2*i - 0.122*2 + 12.2*3 -*4 = 3.44

100*2 - 99.9*3 + *4 = 2.15
15.3*, + 0.110*2 - 13.1*3 -*4 = 4.16

Actual solution (0.17682530, 0.01269269, -0.02065405, -1.18260870)'.

d. TT*I — e*2 + \/2*3 — >/3x4 = VTT
3

7T
:
*1 + e*2 - e2

*3 + -*4 = o

>/5*1 - V6*2 + *3 - \/2*4 = 7T

7T 3
*1 + e2

*2 - >/7*3 + ^*4 = y/2

Actual solution (0.78839378,-3.12541367, 0.16759660, 4.55700252)'.
6. Repeat Exercise 5 using four-digit rounding arithmetic.

7. The n x n Hilbert matrix, H (n\defined by

8.

L/(«)
1 < i, j < n

is an ill-conditioned matrix that arises when solving for the coefficients of least squares polynomials
(see Section 8.3, page 331).
a. Show that

[ Hwri

16 -120 240 -140

-120 1200 -2700 1680

240 -2700 6480 -4200

-140 1680 -4200 2800

and compute K x ( H 'i ] ).
b. Show that

[tf ®]"1

25 -300 1050 -1400 630

-300 4800 -18900 26880 -12600
1050 -18900 79380 -117600 56700

-1400 26880 -117600 179200 -88200

630 -12600 56700 -88200 44100

and compute AT:x>(//
(5)).

c. Solve the linear system

1
0

0

1

H (•*)

*1

*2

X 3

*4

using three-digit rounding arithmetic, and compare the actual error to the residual vector error
bound.

a. Use four-digit rounding arithmetic to compute the inverse H 1 of the 3 x 3 Hilbert matrix H .

b. Use four-digit rounding arithmetic to compute H = ( //'
,
)

_
l.

c. Determine \\ H — H \\x.
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7.7 The Conjugate Gradient Method 309

7.7 The Conjugate Gradient Method

Magnus Hcstcnes (1906-1991)

and Eduard Stiefcl (1907-1998)

published the original paper on

the conjugate gradient method in

1952 while working at the

Institute for Numerical Analysis

on the campus of UCLA.

The conjugate gradient method of Hestenes and Stiefel [HS] was originally developed as a
direct method designed to solve a n n x n positive definite linear system. As a direct method

it is generally inferior to Gaussian elimination with pivoting because both methods require

n steps to determine a solution, and the steps of the conjugate gradient method are more
computationally expensive than those in Gaussian elimination.

However, the conjugate gradient method is useful when employed as an iterative ap-
proximation method for solving large sparse systems with nonzero entries occurring in
predictable patterns. These problems frequently arise in the solution of boundary-value
problems, and too much computation is required for direct methods in these situations.
When the matrix has been preconditioned to make the calculations more effective, good

results are obtained in only about y/n steps. Employed in this way, the method is preferred

over Gaussian elimination and the previously discussed iterative methods.
Throughout this section we assume that the matrix A is positive definite. We will use

the inner product notation

(x, y) = x'y, (7.4)

where x and y are n -dimensional vectors. We will also need some additional standard results
from linear algebra. A review of this material is found in Section 9.2.

The next result follows easily from the properties of transposes (see Exercise 12).

Inner Product Properties

For any vectors x, y, and z and any real number a, we have

(i) (x. y) = (y. x);

(ii) (ax, y) = (x, ay) = a (x, y);

(iii) (x + z, y) = (x, y) + <z, y);

(iv) (x, x> > 0;

(v) (x, x) = 0 if and only if x = 0.

When A is positive definite, (x. Ax) = x'Ax > 0 unless x = 0. Also, because A is
symmetric, we have

(x, Ay) = x'Ay = x'A'y = (Ax)'y = (Ax, y). (7.5)

The following result isa basic tool in the development of the conjugate gradient method.

Minimization Condition for Positive Definite Matrices

The vector x is a solution to the positive definite linear system Ax = b if and only if x
minimizes

g(x) = (x, Ax) — 2(x, b).

To show this result we fix the vectors x and v and consider the single-variable function

h(t ) = g ( x -F rv).
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