302 CHAPTER 7 = Iterative Methods for Solving Linear Systems

b.  Solve this system using n = 10, 50, and 100.
¢. Change the probabilities to e and 1 — & for movement to the left and right, respectively, and
derive the linear system similar to the one in (a).
d. Repeat (b) using the system in (c) with e = %
5. The forces on the bridge truss shown here satisfy the equations in the following table:

Joint  Horizontal Component Vertical Component

® -F+Lfi+hH=0 Lfi-F=0
@ -2h+Lp=0 -Lp-p-lf=0
@ —fait+ fs=0 f3 — 10,000 = 0
—{fi- =0 ifi-F=0

This linear system can be placed in the matrix form

-1 0 0 £ 1 0 0 0
0 -1 0 £ o 0 o off f 1 1 0
— 1 2
0 -t o 0 o I o]0 8
o o o0 -2 o -1t L o|l|lAal_]| o
0 0 0 0 -1 0 © 1 Ll | 0
o 0 0 0 o0 1 0 off®% 1039
5 5 5 0
o 0 o0 —f o o f of[x| | o
[ 0 0 0 o0 0 o0 =4 -

Approximate the solution of the resulting linear system to within 102 in the /.; norm using as initial
approximation the vector all of whose entries are 1s and (i) the Gauss-Seidel method, (ii) the Jacobi
method, and (iii) the SOR method with w = 1.25.

- : 1.6 Error Bounds and Iterative Refinement

This section considers the errors in approximation that are likely to occur when solving linear
systems by both direct and iterative methods. There is no universally superior technique
for approximating the solution to linear systems, but some methods will give better results
than others when the matrix satisfies certain conditions.
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76 Error Bounds and Iterative Refinement 303

It seems intuitively reasonable that if % is an approximation to the solutionxof Ax = b
and the residual vector, defined by

r=b-— AX,
has the property that if ||r] is small, then ||x — X|| should be small as well. This is often the

case, but certain systems, which occur quite often in practice, fail to have this property.

Example 1 The linear system Ax = b given by

1 2 X1 _ 3
1.0001 2 x |~ | 3.0001

has the unique solution x = (1, 1)’ Determine the residual vector for the poor approximation
X = (3, —0.0001)".

Solution 'We have

r=b—Ai=[3.0?)01]_[1.0}101 g][—&gﬂﬁl]z[&?z}

50 |Ir|lsc = 0.0002. Although the norm of the residual vector is small, the approximation
&% = (3, —0.0001)' is obviously quite poor; in fact, [|x — X||.c = 2. ]

The difficulty in Example 1 is explained quite simply by noting that the solution to the
system represents the intersection of the lines
h: x1+2x=3 and bL: 1.0001x; + 2x; = 3.0001.

The point (3, —0.0001) lies on [;, and the lines are nearly the same. This means that
(3, —0.0001) also lies close to the line /;, even though it differs significantly from the
solution of the system, which is the intersection point (1, 1). (See Figure 7.6.)

Figure 7.6

(3,0)
t T v\ 1 -
1. @, —0.000‘?)\ ;i‘ % M

Example 1 was clearly constructed to show the difficulties that might—and, in fact,
do—arise. Had the lines not been nearly coincident, we would expect a small residual vector
toimply an accurate approximation. In the general situation, we cannot rely on the geometry
of the system to give an indication of when problems might occur. We can, however, obtain
this information by considering the norms of the matrix and its inverse.
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304 CHAPTER 7 = [lterative Methods for Solving Linear Systems

Residual Vector Error Bounds

If % is an approximation to the solution of Ax = b and A is a nonsingular matrix, then
for any natural norm,

lx—%ll < [b— AK] - |A~"|
and

BX  ag- paty A2

- ided Dandb £ 0.
x| T i s

This result implies that ||A~"|| and ||A| - ||[A~!|| provide an indication of the connec-
tion between the residual vector and the accuracy of the approximation. In general, the
relative error ||x — X||/||x[| is of most interest. Any convenient norm can be used for this
approximation; the only requirement is that it be used consistently throughout.

Condition Numbers

The condition number, K (A), of the nonsingular matrix A relative to anorm || - || is
K(4) = |All- A7)
Note that for any nonsingular matrix A and natural norm || - ||,
L= =[A- A7 < Al 1AM = K (A).
With this notation, we can reexpress the inequalities in the previous result as

IIb — Ax|] flx — I b — A%l
——— an = K(A
LAl lixIl ) bl
A matrix A is well-behaved (called well-conditioned) if K (A) is close to 1, and A
is not well-behaved (called ill-conditioned) when K(A) is significantly greater than 1.
Conditioning in this instance refers to the relative security that a small residual vector
implies a correspondingly accurate approximate solution.

[lx — %] = K(A)

Example 2 Determine the condition number for the matrix
- 1 2
A= [ 1.0001 2 }

Solution 'We saw in Example 1 that the very poor approximation (3, —0.0001)' to the exact
solution (1, 1)* had a residual vector with small norm, so we should expect the condition
number of A to be large. We have || A || . = max{|1| + |2|, |1.001| + |2|} = 3.0001, which
would not be considered large. However,

_1 _ | —10000 10000 =
A= |: 50005 —5000 ] so  [|A7 || = 20000,
and for the infinity norm,

K.(A) = (20000)(3.0001) = 60002.

The size of the condition number for this example should certainly keep us from making
hasty accuracy decisions based on the residual of an approximation. =
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76 Error Bounds and Iterative Refinement 305

In MATLAB, the condition number K (A) for the matrix in Example 2 can be com-
puted using the command cond. To obtain the /.. condition number, use the command

cond(A,Inf)
MATLAB responds with
ans = 6.000199999999003¢ + 004

The default for cond is the I; condition number, and either of the commands cond (A) or
cond(A,2) gives

K>(A) = 5.000100002987370e + 004.

Iterative Refinement

The residual of an approximation can also be used to improve the accuracy of the approx-
imation. Suppose that X is an approximation to the solution of the linear system Ax = b
and that r = b — Ax is the residual vector associated with %. Consider ¥, the approximate
solution to the system Ay = r. Then

A r=A""b-AR) =A"'b-A'AR=x—&.
So
x~%4+¥.

This new approximation X + ¥ is often much closer to the solution of Ax = b than
is %, and ¥ is easy to determine because it involves the same matrix, A, as the original
system. This technique is called iterative refinement, or iterative improvement, and is
shown in the following Illustration. To increase accuracy, the residual vector is computed
using double-digit arithmetic.

Illustration  The linear system given by
3.3330 15920 -—10.333 X 15913
22220 16.710 9.6120 x; | = | 28.544
1.5611 5.1791  1.6852 X3 8.4254

has the exact solution x = (1, 1, 1)*.
Using Gaussian elimination and five-digit rounding arithmetic leads successively to
the augmented matrices

33330 15920 -—10.333 : 15913
0 —10596 16.501 : 10580
0 —7451.4 6.5250 : —7444.9
and
3.3330 15920 —10.333 : 15913
0 —10596 16.501 : —10580 |.
0 0 —5.0790 : —4.7000

The approximate solution to this system is

% = (1.2001, 0.99991, 0.92538)".
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306 CHAPTER 7 = [lterative Methods for Solving Linear Systems

The residual vector corresponding to  is computed in double precision to be
r=b— A%

15913 3.3330 15920 -10.333 1.2001

= | 28.544 | — | 2.2220 16.710 9.6120 0.99991
8.4254 1.5611 5.1791 1.6852 0.92538
15913 15913.00518 —0.00518

= | 28.544 | — | 28.26987086 | = 027412914 |,
8.4254 8.611560367 —0.186160367

50
Irllac = lIb — ARl = 0.27413.

To use iterative refinement to improve this approximation, we now solve the system
Ay = rfor¥. Using five-digit arithmetic and Gaussian elimination, the approximate solution
¥ to the equation Ay = ris

¥ = (—0.20008, 8.9987 x 107%, 0.074607)"
and we have the improved approximation to the system Ax = b given by

% + § = (1.2001, 0.99991, 0.92538)" + (—0.20008, 8.9987 x 10~, 0.074607)"
= (1.0000, 1.0000, 0.99999)" .

This approximation has the residual vector
IEllsc = lIb — A(X + §) |l = 0.0001.

If we were continuing the iteration processes, we would, of course, use X + ¥ as our starting
values rather than X. O

EXERCISE SET 76

L Compute the [, condition numbers of the following matrices.

L. it [ 3.9 1.6
- |11 } b |68 29 }
3 4
1 2 d [ 1.003 58.09
% 1.0001 2 * | 5550 3218
i R | [ 0.04 001 -0.01
e 0 1 =1 f. 02 05 =02
|0 0 -1 B 2 4

2. The following linear systems Ax = b have x as the actual solution and X as an approximate solution.
Using the results of Exercise 1, compute [|x — ||, and

lib — AR]l
Kg(d)y——
o | Allos

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
leemed S any suppressed content does aol mastlaly affoa the overall leaming expericnce. Congage Loaming feserves the right ki emove addltional contemt & any 1ime if subseguent rights resirctions sequire L



76 Error Bounds and Iterative Refinement 307

. 2 T 3 e .
R Gt T 1

iR -
"_(7'_6) , &= (0.142, —0.166)'".

b 3.9x + 1.6x:=5.5,
6.8x; + 295, =97,
x=(1,1), x= (098, L.1)".
. x4+ 2X1 =73,
LﬂDDlxl +2x; = 3.0001,
x=(1,1), £=(0.96, 1.02)".

d. 1.003x, + 58.09x, = 68.12,
5.550x; + 321.8x, = 377.3,
x= (10, 1)!, x = (=10, I)".
& —xn—-rn=2n,
X3 —x3=0,
—x;=m,
x= (0, =, —m)', £ =(-0.1,-3.15, -3.14)".

f. 0.04x, + 0.01x; — 0.01x3 = 0.06,
0.2x, + 051 — 02r, =03,
x+ 2Xz + 4X3 = ll.,
x = (1.827586, 0.6551724, 1.965517)', x = (1.8,0.64, L.9)".

3. The linear system
1 2[x]_[ 3
1.0001 2 x| | 3.0001

has the solution (1, 1)‘. Change A slightly to

{0.9;99 ﬂ

and consider the linear system

1. 20Tx1..T 3
0.999% 2 x| | 30001 |
Compute the new solution using five-digit rounding arithmetic, and compare the change in A to the
change in x.

4.  The linear system AX = b given by

oo 3] [ %)= [ 5001 |

has the solution (1, 1)'. Use seven-digit rounding arithmetic to find the solution of the perturbed

system
1 2 x| _ | 3.00001
Loooo1r 2 x2 | | 3.00003 |
and compare the change in A and b to the change in x.
5. (i) Use Gaussian elimination and three-digit rounding arithmetic to approximate the solutions to the

following linear systems. (ii) Then use one iteration of iterative refinement to improve the approxi-
mation, and compare the approximations to the actual solutions.
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308 CHAPTER 7 = Iterative Methods for Solving Linear Systems

a. 0.03x; + 58.9x, = 59.2
5.31x; — 6.10x; = 47.0
Actual solution (10, 1)'.

h. 3.3330x; + 15920x2 + 10.333x; = 7953

2.2220x; + 16.710x2 + 9.6120x; = 0.965

—1.5611x; + 5.1792x; — 1.6855x; =2.714
Actual solution (1, 0.5, —1).

¢ L19x; 4+ 2.11x; — 100x; + x4 = 1.12

14.2x; — 0.122x; + 12.2x; — xy =344

100x; — 99.9x3 + x4 =2.15

15.3x; + 0.110x; — 13.1x3 — x5 =4.16
Actual solution (0.17682530, 0.01269269, —0.02065405, —1.18260870)".

d. wx—  exz 4 +2x3 — /3x = /11
x4+ exy— etxz+ %= 0
Vix -V + xm—AIx=n
wx + €x—Tn+ %x.» =2
Actual solution (0.78839378, —3.12541367, 0.16759660, 4.55700252)".

6. Repeat Exercise 5 using four-digit rounding arithmetic,
7. The n x n Hilbert matrix, H'", defined by

") = - I <ij<n

S !

is an ill-conditioned matrix that arises when solving for the coefficients of least squares polynomials
(see Section 8.3, page 331).

a.  Show that
16 -120 240 —140
(H9]! = —120 1200 —2700 1680
- 240 -2700 6480 —4200 |’
—-140 1680 —4200 2800
and compute K..(H ™).
b. Show that
25 —300 1050 —1400 630
-300 4800  —18900 26880 —12600
[HI]! = 1050 —18900 79380 —117600 56700
—1400 26880 —117600 179200 —B88200
630 —12600 56700 —88200 44100
and compute K (H™).
¢. Solve the linear system
Xy 1
| Xz _ 0
" = | |0
X4 1

using three-digit rounding arithmetic, and compare the actual error to the residual vector error
bound.

Use four-digit rounding arithmetic to compute the inverse H ' of the 3 x 3 Hilbert matrix H.
Use four-digit rounding arithmetic to compute i/ = (H~')".
c. Determine |H — H||.

s
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7.7 The Conjugate Gradient Method 309

-- 1.1 The Conjugate Gradient Method

The conjugate gradient method of Hestenes and Stiefel [HS] was originally developed as a
direct method designed to solve an n x n positive definite linear system. As a direct method
it is generally inferior to Gaussian elimination with pivoting because both methods require
n steps to determine a solution, and the steps of the conjugate gradient method are more
computationally expensive than those in Gaussian elimination.

and Eduard Stiefel (1907-1998) However, the conjugate gradient method is useful when employed as an iterative ap-
publishisd the origifial pager on proximation method for solving large sparse systems with nonzero entries occurring in
the conjugate pradient method in  Predictable patterns. These problems frequently arise in the solution of boundary-value

Magnus Hestenes (1906-1991)

1052 while working at the problems, and too much computation is required for direct methods in these situations.
Institute for Numerical Analysis ~ When the matrix has been preconditioned to make the calculations more effective, good
on the campus of UCLA. results are obtained in only about ./n steps. Employed in this way, the method is preferred

over Gaussian elimination and the previously discussed iterative methods.
Throughout this section we assume that the matrix A is positive definite. We will use
the inner product notation
(x,y) =xy, (7.4)

where x and y are n-dimensional vectors. We will also need some additional standard results
from linear algebra. A review of this material is found in Section 9.2.
The next result follows easily from the properties of transposes (see Exercise 12).

Inner Product Properties
For any vectors X, y, and z and any real number o, we have
@ (xy) =(nxs
(i) (ox,y) = (x, ay) = a(x,¥);
(i) (x+zy) =Xy +@y);
(iv) (x.%) =0
(v) (x,x)=0ifand onlyifx = 0.

When A is positive definite, (x, Ax) = x’Ax > 0 unless x = 0. Also, because A is
symmetric, we have

(x, Ay) =x'Ay =x'A'y = (AX)'y = (Ax,y). (1.5)
The following result is a basic tool in the development of the conjugate gradient method.

Minimization Condition for Positive Definite Matrices
The vector x is a solution to the positive definite linear system Ax = b if and only if x
minimizes

2(x) = (x, Ax) —2(x, b).

To show this result we fix the vectors x and v and consider the single-variable function

h(t) = g(x +tv).
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