
C H A P T E R

6 Direct Methods for Solving Linear Systems

6.1 Introduction

Systems of equations are used to represent physical problems that involve the interaction of

various properties. The variables in the system represent the properties being studied, and
the equations describe the interaction between the variables. The system is easiest to study

when the equations are all linear. Often the number of equations is the same as the number

of variables, for only in this case is it likely that a unique solution will exist.
Not all physical problems can be reasonably represented using a linear system with the

same number of equations as unknowns, but the solutions to many problems either have this

form or can be approximated by such a system. In fact, this is quite often the only approach
that can give quantitative information about a physical problem.

In this chapter we consider direct methods for approximating the solution of a system

of n linear equations in n unknowns. A direct method is one that gives the exact solution to

the system, if it is assumed that all calculations can be performed without round-off enor
effects. However, we cannot generally avoid round-off error and we need to consider quite

carefully the role of finite-digit arithmetic error in the approximation to the solution to the
system, and how to arrange the calculations to minimize its effect.

6.2 Gaussian Elimination

If you have studied linear algebra or matrix theory, you probably have been introduced

to Gaussian elimination, the most elementary method for systematically determining the

solution of a system of linear equations. Variables are eliminated from the equations until
one equation involves only one variable, a second equation involves only that variable and

one other, a third has only these two and one additional, and so on.The solution is found by

solving for the variable in the single equation, using this to reduce the second equation to

one that now contains a single variable, and so on, until values for all the variables are found.
Three operations arc permitted on a system of equations E \ , £2, • • • . £*

.

Operations on Systems of Equations

• Equation £, can be multiplied by any nonzero constant A., with the resulting
equation used in place of £,. This operation is denoted (A.£,) - (£,).

• Equation E } can be multiplied by any constant A., and added to equation £,, with
the resultingequation used in place of £,-.This operation is denoted (£;+A.£ j) -
(ft).

• Equations E , and Ej can be transposed in order.This operation is denoted (£,) <-*
(Ej ).
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230 C H A P T E R 6 Direct Methods for Solving Linear Systems

Illustration

By a sequence of the operations just given, a linear system can be transformed to a
more easily-solved linear system with the same solutions. The sequence of operations is

shown in the next Illustration.

The four equations

Ey. *1 4- *2 4- 3*4 = 4,

Ey. 2*i + *2 - *3 4- *4 = 1 ,

Ey 3*, - *2 - *3 4- 2*4 = -3,

£4: -*1 4- 2*2 4- 3*3 - *4 = 4,

will be solved for* j,*2,*3, and *4. We first use equation £1 to eliminate the unknown X\

from equations £2, £3» and £4 by performing (£2 — 2£ j ) - (£2), (£3 — 3£ j) — (£3),

and (£4 + £] ) - (£4). For example, in the second equation

(£2 — 2£,) — (£2)

produces

(2*i + X 2 -*3 + *4) - 2( x\ + x2 + 3*4) = 1 - 2(4) ,

which simplifies to the result shown as £2 in

Et: *1 4- *2 4- 3*4 = 4,

Ey - *2 - *3 - 5*4 = -7 ,

Ey. - 4*2 - *u>1 -O* II -15,

Ey. 3*2 4- 3*3 4- 2*4 = 8.

For simplicity, the new equations arc again labeled £1, £2, £3, and £4.
In the new system,£2 is used toeliminate the unknown JC2 from £3 and £4 by performing

(£3 — 4£2) — (£3) and (£4 4- 3£2) — (£4). This results in

E\i x1 +*2 4- 3*4

£2: -*2 - *3 - 5*4

£3: 3*3 + 13*4

£4: — 13*4

The system of equations (6.2) is now in triangular (or reduced) form and can be

solved for the unknowns by a backward-substitution process. Since £4 implies *4 = 1,

we can solve £3 for*3 to give

x3 = * (13 - 13*4) = ^(13 - 13) = 0.
mJ mJ

Continuing, £2 gives

*2 = — (“7 + 5*4 4- *3) = — (—7 4- 5 + 0) = 2,

4,

“7,

13,

-13.

(6.2)

and £1 gives

*i = 4 — 3*4 — *2 = 4 — 3 — 2 = — 1 .

The solution to system (6.2), and consequently to system (6.1), is therefore *1 = — 1,

*2 = 2, *3 = 0, and *4 = 1.
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6.2 Gaussian Elimination 231

Matrices and Vectors

When performing the calculations of the Illustration, we did not need to write out the full
equations at each step or to carry the variables X\,X 29 *3 , and x4 through the calculations

because they always remained in the same column. The only variation from system to

system occurred in the coefficients of the unknowns and in the values on the right side of
the equations. For this reason, a linear system is often replaced by a matrix, a rectangular

array of elements in which not only is the value of an element important, but also its position
in the array. The matrix contains all the information about the system that is necessary to

determine its solution in a compact form.
The notation for an n x m ( n by m ) matrix will be a capital letter, such as A, for the

matrix, and lowercase letters with double subscripts, such as air to refer to the entry at the
intersection of the ith row and jth column; that is,

A = [a y ) =

a\\ d ] 2

a2 l d22

a\m

&2m

O/i l &n2 * * *

Example 1 Determine the size and respective entries of the matrix

A
2 -1 7
3 1 0

Solution The matrix has two rows and three columns, so it is of size 2 x 3. Its entries are
described by an = 2, d\2 = — l, ai3 = 7, 021 = 3, d22 = 1, and 023 = 0.

The 1 x n matrix A = [an d\2 • - - d\n ] is called an n -dimensional row vector, and

an n x 1 matrix

o11

«21
A =

1

is called an /{-dimensional column vector. Usually the unnecessary subscript is omitted
for vectors and a boldface lowercase letter is used for notation. So,

*1

*2
x =

. x
" .

denotes a column vector, and y = [yi y2 • • • yn ] denotes a row vector.
A system of n linear equations in the n unknowns x\ 9 *2» • • • . xn has the form

011*1 + al2x2 + • • + dlnxn - bu

021*1 + 022*2 H b 02nX „ = b2.

On 1*1 + 0„2*2 + * * ’ + Onn^fl — bn.
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232 C H A P T E R 6 Direct Methods for Solving Linear Systems

An n x {n 4- 1) matrix can be used to represent this linear system by first constructing

^ = laij ] =

«11 «12 ' * ’ «ln
'

*t
‘

«21 «22 «2*
and b =

b2

«nl «n2 * * * «nn . b» .
Augmented refers to the fact that

the right-hand side of the system

has been included in the matrix.

and then combining these matrices to form the augmented matrix:

W , b]

«11 «12 * * * « ln b{

«21 «22 * * * «2n b2

I ! •

an i a,,2 • • • ann bn.
where the vertical dotted line before the last column is used to separate the coefficients of

the unknowns from the values on the right-hand side of the equations.
Repeating the operations involved in the Illustration on page 230 with the matrix

notation results in first considering the augmented matrix:

1 1 0 3 4
'

2 1 -1 1 1
3 -1 -1 2 -3

-1 2 3 -1 4

Performing the operations

(£2 - 2£,) -» (£2), (£3-3£I ) -* (£3), and (£4 + £,) - (£4)

produces

1 1 0 3 4
'

0 -1 -1 -5 -7
0 -4 -1 -7 -15
0 3 3 2 8

Then

A technique similar to Gaussian

elimination first appeared during

the Han dynasty in China in the

text Nine Chapters on the

Mathematical Art , which was

written in approximately 200

BCE. Joseph Louis Lagrange

(1736-1813) described a
technique similar to this

procedure in 1778 for the case

when the value of each equation

is 0. Gauss gave a more general

description in Theoria Motus

corporum coelestium sectionibus

solem ambientium, which

described the least squares

technique he used in 1801 to

determine the orbit of the dwarf

planet Ceres.

(£3 - 4£2) - (£3) and (£4 + 3£2) (£4),

produces the final matrix

110 3
0 -1 -1 -5
0 0 3 1 3
0 0 0 -1 3

4
-7
1 3

-1 3

This final matrix can be transformed into its corresponding linear system and solutions

for ,*2,*3, and *4 obtained. The procedure involved in this process is called Gaussian
Elimination with Backward Substitution .

The general Gaussian elimination procedure applied to the linear system

£i: tfn.xi 4- a12*2 + - - - + a\nXn = bu

£2: «21*1 + a22*2 H h «2/i*n = bi ,

£« • «nl*l "f a,j2*2 4" * * * 4“ flnn^n — bfi ,
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6.2 Gaussian Elimination 233

is handled in a similar manner. First form the augmented matrix A:

an a\2 • • • <* ln

A = [A , b] =
ai i a22 <*2n • a2,n+l

Qnl an2 * * * ann

where A denotes the matrix formed by the coefficients and the entries in the (n + l)st

column are the values of b; that is, al %n+
, = b, for each i = 1, 2, ...,n.

Suppose that an # 0. To convert the entries in the first column, below an, to zero, we
perform the operations (£* - mk ,£,) - (£*) for each k = 2, 3 ... , n for an appropriate
multiplier mk\. We first designate the diagonal element in the column, a,, as the pivot

element. The multiplier for the k\h row is defined by mk\ = ak\ /an. Performing the

operations (£* — I £ i ) - (£*) for each k = 2, 3, ... , n eliminates (that is, changes to

zero) the coefficient of x\ in each of these rows:

an a\2 • • • a\n : b\ E2 — rn2 i E i — E2 011 012 • • • Oin : b\

021 022 • • • &2n \ b2 Ei -mi\E\ - £3 0 022 * * * <*2/1 • &2

On 1 &n2 * * ’ ann ; bn. £„ — mn\ E\ - £„ 0 On2 * * * ann \ bn

Although the entries in rows 2, 3, . .. , n are expected to change, for ease of notation, we
again denote the entry in the ith row and the jth column by atj .

If the pivot element 022 # 0, we form the multipliers mk2 = ak 2/ a22 and perform the

operations (£* — m^ Ei ) — £* for each k = 3, ... ,n obtaining

an
0

012

022

* * * a\n

• • • a2n

bi
bi

E ) - m32 E2 -> £3
an
0

0,2
022

* * * a\n

• • • a^
br
b2

0 an2 * * * ann K
En — mn2 E2 — £„

. 0 0 * * * ann K
We then follow this sequential procedure for the rows i = 3 ..., n — 1. Define the multiplier

mki = aki /aa and perform the operation

( Ek - m kiE i ) - (Ek )

for each k = i +1, i + 2, ..., n, provided the pivot element a„ is nonzero. This eliminates

Xi in each row below the ith for all values of i = 1,2,..., n — 1. The resulting matrix has

the form

0, i 0,2 • * * 0,n ai ,n+i

0.. q
^2 • * * f l2n a2 ,n+ l

l
• • •

. 0 0 Onn an ,n+im

where, except in the first row, the values of a, j are not expected to agree with those in the

original matrix A.The matrix A represents a linear system with the same solution set as the
original system, that is,

a\\X\ -f 0,2*2 H h a\n*n = 01./J +1.
<*22*2 H 1- <*2nXn = 02.«+!.

&nnXrt = ^n.n+1 »
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234 C H A P T E R 6 Direct Methods for Solving Linear Systems

Backward substitution can be performed on this system. Solving the nth equation for *„

gives

®n,n +l
Xn = •

Qnn

Then solving the (n — l )st equation for jcn _
i and using the known value for xn yields

x n-1
&n — l .n+ l &n—l ,nXn

<*n-\,n-\
Continuing this process, we obtain

Bj.n+1 — ( a iJ+lX j+l H b Oj.nXn )

an
ai,n+1 ^̂ j=i+\ aijXj

an

The program GAUSEL61
implements Gaussian

Elimination with

Backward Substitution.

for each / = n — 1, n — 2, . . . , 2, 1.
The procedure will fail if at the ith step the pivot element a„- is zero, for then either

the multipliers m*, = am /an are not defined (this occurs if an = 0 for some i < n ) or the
backward substitution cannot be performed (if ann = 0). This does not necessarily mean

that the system has no solution, but rather that the technique for finding the solution must

be altered by interchanging rows when a pivot is 0.

Program GAUSEL61 incorporates row interchanges when required . An illustration is
given in the following example.

Example 2 Represent the linear system

Ell Xi — *2 + 2*3 - *4 = -8,

E2: 2*i - 2*2 + 3*3 - 3*4 = -20,

£3: *1 + *2 + *3 = — 2,

£4: *1 - *2 + 4*3 + 3*4 = 4,

as an augmented matrix and use Gaussian elimination to find its solution.

Solution The augmented matrix is

'

1 -1 2 -1 -8
'

2 -2 3 -3 -20
1 1 1 0 -2
1 -1 4 3 4

Performing the operations

(£2 - 2£|) - (£2), (£3 - Ei ) (£3) , and (£4 - £1 ) - (£4),

gives the matrix

The pivot element for a specific

column is the entry that is used to

place zeros in the other entries in

that column.

'

1 -1 2 -1 -8
‘

0 0 -1 -1 -4
0 2 -1 1 6
0 0 2 4 12

The new diagonal entry 022. called the pivot element, is 0, so the procedure cannot

continue in its present form. But operations (£, ) <+ (£;) are permitted, so a search is made
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6.2 Gaussian Elimination 235

of the elements <232 and a42 for the first nonzero element. Since <232 ^ 0, the operation
(£2) ** (£3) is performed to obtain a new matrix.

'

1 -1 2 -1 -8
'

0 2 -1 1 6
0 0 -1 -1 -4

0 0 2 4 12

Since x2 is already eliminated from £3 and £4, thecomputations continue with the operation
(£4 + 2£3) - (£4), giving

A (4) =

'

1 -1 2 -1 -8
‘

0 2 -1 1 6
0 0 -1 -1 -4

0 0 0 2 4

The matrix is now converted back into a linear system that has a solution equivalent to the

solution of the original system and the backward substitution is applied:

X 4 = t = 2
'

1-4- (-1M .
*3 = : = 2,

x2 =

-1

[6 — x4 — (-1)*3]

2
= 3,

[~8 — (—l)x4 — 2X3 — (— l)x2]- =

To define the initial augmented matrix in MATLAB, which we will call AA, we enter

the matrix row by row. A space is placed between each entry in a row, and the rows in AA

are separated by a colon. So, for the matrix in Example 2 we have

AA = [1 -1 2 -1 -8; 2 -2 3 -3 -20; 1 1 1 0 -2; 1 -1 4 3 4]

MATLAB responds with

1 -1 2 -1 -8

2 -2 3 -3 -20
1 1 1 0 -2
1 -1 4 3 4

To perform the operation ( Ej + m£, ) — (£y ) in MATLAB we use the command

A A ( j,:) = A A ( j, :) + m * A A (i , : )

The notation A A (k ,l) refers to entry in the k\h row and /th column. The use of : in
MATLAB refers to multiplying an entire row or column. For example, multiplying the fcth

row by m is done with m *A A (k , : ). Similarly, multiplying the /th column by m would be
done with m*A A ( : ,1). So the next command subtracts twice the first row of AA from the
second row.

A A ( 2 , : ) = A A (2 , :)-2*A A (l ,:)
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236 C H A P T E R 6 Direct Methods for Solving Linear Systems

which gives

1 -1 2 -1 -8
0 0 -1 -1 -4

1 1 1 0 -2
1 -1 4 3 4

We then subtract the first row of AA from the third row, followed by the subtraction of the

first row from the fourth row with

AA (3, : ) = AA (3, : )-AA (1,:)

and

AA (4 , : ) = A A (4 , : ) — A A (1,:)

This gives

'

1 -1 2 -1 -8
'

0 0 -1 -1 -4
A A ~ 0 2 -1 1 6

0 0 2 4 12

The variable x\ has now been eliminated from the rows corresponding to the second,

third, and fourth equations.Since ai2 is zero, we need to interchange rows to move a nonzero
entry to an.To interchange rows 2 and 3, we store row 2 in a temporary row vector B, move
row 3 to row 2, and then more the temporary row vector B to row 3. This is done with

B = A A (2 ,:)

AA (2 , : ) = A A (3, : )

AA (3, : ) = B

The result is

AA =

1 -1 2 -1 -8
0 2 -1 1 6
0 0 -1 -1 -4
0 0 2 4 12

The final operation in Gaussian elimination for this matrix is to add 2 times the third row
to the fourth row with

AA (4, : ) = A A (4, : ) +2*AA (3, : )

This produces

1 -1 2 -1 -8
0 2 -1 1 6
0 0 -1 -1 -4
0 0 0 2 4

To perform the backward substitution we need to define the vector x that will contain the

solution. We initialize a vector x as the 0 vector and will replace these entries as we progress

through the backward substitution.

x = [0 0 0 0]
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6.2 Gaussian Elimination 237

Now we replace the 0 in the fourth column of x with

x (4) = AA (4,5) /AA (4 ,4)

which gives

Then

x (3)

gives

x (2)

gives

x = 0 0 0 2

(AA (3,5) - AA (3,4)*x (4) ) /AA (3,3)

x = 0 0 2 2

(AA (2 ,5) - (AA (2 ,3)*x (3) +AA (2 ,4)*x (4) ) )/AA (2 , 2)

x = 0 3 2 2

and

x (l) = (AA (1,5) - (AA (1, 2) *x (2) +AA( l ,3)*x (3)+AA ( l , 4)*x (4) ) )/AA ( l ,1)

gives the final solution

x = -7 3 2 2

which corresponds to x\ = -7, X2 = 3, X3 = 2, and x4 = 2.
Example 2 illustrates what is done if one of the pivot elements is zero. If the ith pivot

element is zero, the ith column of the matrix is searched from the ith row downward for
the first nonzero entry, and a row interchange is performed to obtain the new matrix. Then

the procedure continues as before. If no nonzero entry is found the procedure stops, and
the linear system does not have a unique solution. It might have no solution or an infinite

number of solutions.

Operation Counts

The computations in the program are performed using only one n x (n + 1) array for

storage. This is done by replacing, at each step, the previous value of a,j by the new one. In
addition, the multipliers are stored in the locations of a*« known to have zero values—that
is, when i < n and k = i + 1, 1 +2, . . . , n.Thus, the original matrix A is overwritten by the

multipliers below the main diagonal and by the nonzero entries of the final reduced matrix
on and above the main diagonal. We will see in Section 6.5 that these values can be used to

solve other linear systems involving the original matrix A.
Both the amount of time required to complete the calculations and the subsequent

round-off error depend on the number of floating-point arithmetic operations needed to

solve a routine problem. In general, the amount of time required to perform a multiplication

or division on a computer is approximately the same and is considerably greater than
that required to perform an addition or subtraction. Even though the actual differences
in execution time depend on the particular computing system being used, the count of

the additions/subtractions are kept separate from the count of the multiplications/divisions
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238 C H A P T E R 6 Direct Methods for Solving Linear Systems

because of the time differential . The total number of arithmetic operations depends on the
size n, as follows:

Multiplications/divisions:

Additions/subtractions:

n3 .2 -
/i

3 n2

3 +
2

'

3
*

5n

6
~

*

For large n , the total number of multiplications anddivisions is approximately n? / 3, that
is, 0(H

3), as is the total number of additions and subtractions. The amount of computation,

and the time required to perform it, increases with n in approximate proportion to n3/3, as
shown in Table 6.1.

Table 6.1 n Multiplications/Divisions Additions/Subtractions

3 17 11
10 430 375
50 44,150 42,875

100 343,300 338,250

E X E R C I S E S E T 6 . 2

l. Obtain a solution by graphical methods of the following linear systems, if possible.

a. x \ + 2x2 = 3,

X ] — X 2 = 0.

c. x , + 2X 2 = 3,

2xi + 4*2 = 6.

e. x,+ 2X2 =0,
2x , 4- 4X2 = 0.

g. 2xi + x2 = -1,

4xi + 2X2 =-2,

xi — 3x2 = 5.

b. xi + 2x2 = 0,

X ] - X2 = 0.

d. xi + 2X2 = 3,

—2xi - 4X2 = 6.

f. 2x , + x2 = - 1 ,

x, + x2 = 2,

x , — 3X2 = 5.

h. 2xi 4- X2 4- X3 = 1,

2xi + 4X2 -*3 = -1.

2. Use Gaussian elimination and two-digit rounding arithmetic to solve the following linear systems.

Do not reorder the equations. (The exact solution to each system is xi = 1, X2 = —1, X3 = 3.)

a. 4x| — x2 4- x3 = 8, b. 4xj 4- x2 4- 2x3 = 9,

2xi 4- 5x2 4- 2x3 = 3, 2xi 4- 4x2 — X3 = -5,

xi 4- 2x2 4- 4x3 = 11. xi 4- X2 - 3x3 = -9.

3. Use Gaussian elimination to solve the following linear systems, if possible, and determine whether
row interchanges are necessary:

a. X| — x2 4- 3x3 = 2,

3x , - 3x2 + x3 = -1,

*1 + *2 = 3.

b. 2xj — 1.5X2 4- 3x3 = 1 ,

-x , + 2x3 = 3,

4xi - 4.5X2 4- 5x3 = 1.
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6.2 Gaussian Elimination 239

c. 2*, = 3,

*i + 1.5*2 = 4.5,

—3*2 + 0.5*3 = —6.6,

2* i 2*2 4- *3 +*4 = 0.8.
d. *i -\x2 + *3 = 4,

2*, - *2 -*3 4- *4 = 5,

*1 +- *2 = 2,

*1 - 2*2 + *3 +*4 = 5.

*1 + *2 +" *4 = 2,

2*1 + *2 ~ *3 + *4 = la
4*i *2 2*3 +- 2*4 = 0,

3* i *2 *3 +- 2*4 = -3.

*1 + *2 + *4 = 2,

2* i + *2 - *3 + *4 = 1,

-*, + 2*2 +- 3*3 - *4 = 4,

3*1 — *2 — *3 + 2l4 = —3.

4. Use MATLAB with long format and Gaussian elimination to solve the following linear systems.

a. j*i +- J*2 + ^*3 = 9,

5*1 +|*2 + J*3 = 8,

2*1 + *2 + 2*3 = 8.

b. 3.333*i + 15920*2 - 10.333*3 = 15913,

2.222*i +- 16.71*2 +- 9.612*3 = 28.544,

1.5611*, + 5.1791*2 + 1.6852*3 = 8.4254.

C. *l +- + j*3 +” 1*4 =
5*1 +|*2 + 1*3 +" §*4 =

5*1 +- 1*2 +- 5*3 + 1*4 = § .
1*1 +- 1

*2 +- 1
*3 +- 5*4 =

d. 2*, + *2 - *3 +*4 - 3*5 = 7,

*1 +- 2*3 -*4 +- *5 = 2,

- 2*2 - *3 +*4 - *5 = -5,
3*i + *2 - 4*3 + 5*5 = 6,

*1 - *2 - *3 -*4 +- *5 = 3.
5. Given the linear system

2*t — 6a*:= 3,

3a*i - *2 =|*

a. Find value(s) of a for which the system has no solutions.

b. Find value(s) of a for which the system has an infinite number of solutions.

c. Assuming a unique solution exists for a given a, find the solution.

6. Given the linear system

*i - *2 +- a*3 =-2,

-*i +- 2*2 -a*3 = 3,

a*i +- *2 +- *3 = 2.

a. Find value(s) of a for which the system has no solutions.

b. Find value(s) of a for which the system has an infinite number of solutions.

c. Assuming a unique solution exists for a given a, find the solution.

7. Suppose that in a biological system there are n species of animals and m sources of food. Let x}

represent the population of the jth species for each j = 1 represent the available daily

Copyright 2012 Cengagc Learnin*. AI Rights Reversed May rot be copied. scanned.oc implicated, in whole or in par. Doc to cjectronie rlghtv.some third pur.y content may be vuppreved rrom the eBook and/or cChaptcnM. Editorial review h*>

deemed Cut any suppressed content does not maxrUXy alTcct the overall learning experience.('engage [.camon reserves the right 10 remove additional eonteat at any time if subsequent nghts restrictions require It



240 C H A P T E R 6 Direct Methods for Solving Linear Systems

supply of the ith food; and ay represent the amount of the ith food consumed on average by a member

of the y'th species. The linear system

0n*i + 012*2 + • • • + 0 i„*„ = bu
021*1 + 022*2 H 4* 02«*/» = bl.

0m 1*1 + 0m 2*2 + * * * + 0mn*n = b„

represents an equilibrium where there is a daily supply of food to precisely meet the average daily

consumption of each species.

a. Let

A = [au ) =
12 0 3
1 0 2 2
0 0 1 1

x = ( xj ) = [1000, 500, 350, 4001, and b = fa ) = [3500, 2700, 900]. Is there sufficient food

to satisfy the average daily consumption?

b. What is the maximum number of animals of each species that could be individually added to the

system with the supply of food still meeting the consumption?

c. If species 1 became extinct, how much of an individual increase of each of the remaining species

could be supported?

d. If species 2 became extinct, how much of an individual increase of each of the remaining species

could be supported?

8. A Fredholm integral equation of the second kind is an equation of the form

«(*) = /(*) + r*(*.ouMt ,

where a and b and the functions / and K are given. To approximate the function u on the interval

[a , b] , a partition x0 = a < x\ < • • • < xm.\ < xm = b is selected and the equations

«(*<) = /(*i) + J K (xl t r )u(r )dt , for each i = 0 m ,

are solved for u( jto), w (*i ), • . • , u (*m ). The integrals are approximated using quadrature formulas

based on the nodes xo, ..., xm. In our problem, a = 0, b = 1, f ( x ) = x2 , and K ( x , t ) = e x ~

‘ .
a. Show that the linear system

0(0) = /(0) + * [A:(0, 0)U (0) + tf (0, 1)II(1)1,

0(1) = /(1) + * (AT (1, 0)0(0) + K {1, 1)0(1)]

must be solved when the Trapezoidal rule is used.

b. Set up and solve the linear system that results when the Composite Trapezoidal rule is used with

n = 4.

c. Repeat (b) using the Composite Simpson's rule.

6.3 Pivoting Strategies

If all the calculations could be done using exact arithmetic, we could almost end the chapter

with the previous section. We now know how many calculations are needed to perform

Gaussian elimination on a system, and from this we should be able to determine whether
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