Direct Methods for Solving Linear Systems

6.1

Introduction

Systems of equations are used to represent physical problems that involve the interaction of
various properties. The variables in the system represent the properties being studied, and
the equations describe the interaction between the variables. The system is easiest to study
when the equations are all linear. Often the number of equations is the same as the number
of variables, for only in this case is it likely that a unique solution will exist.

Not all physical problems can be reasonably represented using a linear system with the
same number of equations as unknowns, but the solutions to many problems either have this
form or can be approximated by such a system. In fact, this is quite often the only approach
that can give quantitative information about a physical problem.

In this chapter we consider direct methods for approximating the solution of a system
of n linear equations in n unknowns. A direct method is one that gives the exact solution to
the system, if it is assumed that all calculations can be performed without round-off error
effects. However, we cannot generally avoid round-off error and we need to consider quite
carefully the role of finite-digit arithmetic error in the approximation to the solution to the
system, and how to arrange the calculations to minimize its effect.

6.2

Operations on Systems of Equations

Gaussian Elimination

If you have studied linear algebra or matrix theory, you probably have been introduced
to Gaussian elimination, the most elementary method for systematically determining the
solution of a system of linear equations. Variables are eliminated from the equations until
one equation involves only one variable, a second equation involves only that variable and
one other, a third has only these two and one additional, and so on. The solution is found by
solving for the variable in the single equation, using this to reduce the second equation to
one that now contains a single variable, and so on, until values for all the variables are found.
Three operations are permitted on a system of equations E;, Es, ... , E,.

* Equation E; can be multiplied by any nonzero constant A, with the resulting
equation used in place of E;. This operation is denoted (AE;) — (E;).

® Equation E; can be multiplied by any constant A, and added to equation E;, with
the resulting equation used in place of E;. This operation is denoted (E;+AE;) —
(Ep).

® Equations E; and E; canbe transposed in order. This operationis denoted (E;) <
(Ej)-
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230 CHAPTER 6 = Direct Methods for Salving Linear Systems

By a sequence of the operations just given, a linear system can be transformed to a
more easily-solved linear system with the same solutions. The sequence of operations is
shown in the next Illustration.

lllustration The four equations

E;: X+ x +3xs= 4,
Ex 2%+ xp— xa+ x4 15
Ex 3x1— xp— x3+2x4=-3,
Ey —x1+2x43x— x4

(6.1)

Il
Sl

will be solved for x,, x5, x5, and x4. We first use equation E, to eliminate the unknown x;
from equations E;, E3, and E4 by performing (E; — 2E;) — (Ep), (Es — 3E;) — (E3),
and (E; + E;) — (E,). For example, in the second equation

(E2—2E)) — (E2)
produces
2oy +x2—x3+x4) — 20 + 22+ 3x)=1-—2(4),

which simplifies to the result shown as E; in

Ei: x1+ xs +3xs= 4,
Es: — X3— xn-—Suy= -7,
Eg! - 4.\'.2 — A ?14 = —15,
Eg 3x24+ 3% +2x= 8.

For simplicity, the new equations are again labeled Ey, E,, E1, and Ej.
Inthe new system, E- is used to eliminate the unknown x, from E and E; by performing
(E; — 4E3) — (E3) and (Es4 + 3E;) — (E4). This results in

E: x4+x + 3= 4
Es —X3 — - Sxy= -7,
2 X2 X3 X4 6.2)
Es 3x3 4+ 13x4 = 13,
E41 = 134\'4 = —13.

The system of equations (6.2) is now in triangular (or reduced) form and can be
solved for the unknowns by a backward-substitution process. Since E; implies x; = 1,
we can solve E; for x3 to give

1 1
X3 = 5(13 —13x4) = 5-(13 —-13) =0.

Continuing, E; gives

X2 =—(~T+5% +x) = ~(-T+5+0) =2,

and E, gives

Xy =4—3x4 — X2 =4-3-2=-1.
The solution to system (6.2), and consequently to system (6.1), is therefore x; = —1,
x3=2,x3=0,andx; = 1. O
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6.2 (Gaussian Elimination 1

Matrices and Vectors

When performing the calculations of the Illustration, we did not need to write out the full
equations at each step or to carry the variables x;, x2, x3, and x, through the calculations
because they always remained in the same column. The only variation from system to
system occurred in the coefficients of the unknowns and in the values on the right side of
the equations. For this reason, a linear system is often replaced by a matrix, a rectangular
array of elements in which not only is the value of an element important, but also its position
in the array. The matrix contains all the information about the system that is necessary to
determine its solution in a compact form.

The notation for an n x m (n by m) matrix will be a capital letter, such as A, for the
matrix, and lowercase letters with double subscripts, such as a;;, to refer to the entry at the
intersection of the ith row and jth column; that is,

ap diz - Gim

az dp - Ay
A=layl=| . g e

Qn) GQp2 - G

Example 1 Determine the size and respective entries of the matrix
T2 =14
S [ 3 10 ]

Selution 'The matrix has two rows and three columns, so it is of size 2 x 3. Its entries are
described bya“ =2,a|2 = —1.613 =7, dz = 3, = ]., ﬂndﬂu = 0. | |

The 1 x n matrix A = [ay; a2 - --dy,] is called an n-dimensional row vector, and
an n x 1 matrix

is called an n-dimensional column vector. Usually the unnecessary subscript is omitted
for vectors and a boldface lowercase letter is used for notation. So,

denotes a column vector, and y = [y; ¥ - - - y.] denotes a row vector.
A system of n linear equations in the n unknowns xy, x3, ... , x, has the form

anx, + aipxa + -+ awmx, = by,

anxy +anxs + o+ awx, = b,

1%y + GnaXy + -+ -+ upXy = by
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232 CHAPTER 6 = Direct Methods for Salving Linear Systems

Augmented refers to the fact that
the right-hand side of the system
has been included in the matrix,

A technique similar to Gaussian
elimination first appeared during
the Han dynasty in China in the
text Nine Chapters on the
Mathematical Art, which was
wrilten in approximately 200
BCE. Joseph Louis Lagrange
(1736-1813) described a
technique similar to this
procedure in 1778 for the case
when the value of each equation
is 0. Gauss gave.a more general
description in Theoria Motus
corporum coelestium sectionibus
solem ambientium, which
described the least squares
technique he used in 1801 1o
determine the orbit of the dwarf
planet Ceres.
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Ann x (n + 1) matrix can be used to represent this linear system by first constructing

aiy ap - Qi by

Gy ap -+ an by
A= [ﬂu’] = and b=

Qn Qya v gy bn

and then combining these matrices to form the augmented matrix:

an iz -0 Qin by

Gy an - am b
{Aa b] o n . . 3 oo (T

Qui  @n2 *°* Gpn E by

where the vertical dotted line before the last column is used to separate the coefficients of
the unknowns from the values on the right-hand side of the equations.

Repeating the operations involved in the Illustration on page 230 with the matrix
notation results in first considering the augmented matrix:

1 1 0 3 2 4
I = N W
3 =1 -1 2.3
= 3 3=l : 4

Performing the operations

(E; —2E)) — (E2), (E3—3E))— (E3), and (Es+ E)) — (Es)

produces

1 1 0 3 = 4

0 =1 -1 5§ & 7

0 =4 =1 —7 =[5

0 3 3 D 3 8
Then

(Ez —4E>) — (E3) and (Eq+3Ex) — (Eq),

produces the final matrix

1 0 |
=1 =k =5 5 —F
0 3 13 : 1|

0 003 13

Do D -

This final matrix can be transformed into its corresponding linear system and solutions
for xy, x3, x3, and x4 obtained. The procedure involved in this process is called Gaussian
Elimination with Backward Substitution.

The general Gaussian elimination procedure applied to the linear system

Ey  anxi4apx +- -+ apmx, =by,

Ez  anxi+apxy+- -+ aux, = by,

Eg aux+ AnaXy + -+ QupXy = b,
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6.2 Gaussian Elimination 233

is handled in a similar manner. First form the augmented matrix A:

aip @iz e @i Qs
= a4y aGn cc G i Gy
A=ibl=| . 3 PR Tl
Gyl Gna v Qg . [

where A denotes the matrix formed by the coefficients and the entries in the (n + 1)st
column are the values of b; that is, @; ,.; = b; foreachi = 1,2,...,n.

Suppose that @y # 0. To convert the entries in the first column, below ayy, to zero, we
perform the operations (E; — my E;) — (E;) foreach k = 2,3... , n for an appropriate
multiplier my,. We first designate the diagonal element in the column, a,, as the pivot
element. The multiplier for the kth row is defined by my; = ay/ay,. Performing the
operations (E;, —my, E,) — (E;) foreach & = 2, 3, ..., n eliminates (that is, changes to
zero) the coefficient of x; in each of these rows:

ay ap v an b E-mpEi—> E (an ap - oan b
ay ap -+ Gy : by Ey—-myE —>E [0 an - ay i b
Gni Gy 0t Gpn 1 by| En—mmE)— E, 0 an - awm i by

Although the entries in rows 2, 3, ..., n are expected to change, for ease of notation, we
again denote the entry in the ith row and the jth column by a;;.

If the pivot element a;; # 0, we form the multipliers m;z = ay;/a;z; and perform the
operations (Ey —myyE;) — E; foreachk =3, ... ,n obtaining

ay ap o oawm b Ey —my By > Es ayy @iz ccc a2 by

0 anp - an : b _ 0 an - am @ b

Eu = ngEZ - En

0 Any ' Oap ; bn 0 0 *rr Gun é bn

We then follow this sequential procedure for the rowsi = 3..., n— 1. Define the multiplier
my; = ay; /a; and perform the operation
(Ey —myuE;) — (Ep)

foreachk =i+ 1,i +2,...,n, provided the pivot element a;; is nonzero. This eliminates
x; in each row below the ith for all values of i = 1, 2,..., n — 1. The resulting matrix has
the form

ap ap e Qi ay psl
0. ap -+ @m @ @

Qrnesurans 0 "&nn ' A1

where, except in the first row, the values of a;; are not expected to agree with those in the

original matrix A. The matrix A represents a linear system with the same solution set as the
original system, that is,

apnx) +dpXy + -+ Xy = 41 psly
a3 Xy + - -+ QX = 2,41y

Qun Xy = Qpnily

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
deemed S Ry supprEssed content dees ool maxtlaly affoa the overll leaming expericnce. Cengage Loaming reserves the ripht i remove additinnal contee & any 1time f subrseguent rights restrictons rogquire [k



234 CHAPTER 6 = Direct Methods for Salving Linear Systems

Backward substitution can be performed on this system. Solving the nth equation for x,
gives

Ay p+1
Xy = ———.
aﬂﬂ

Then solving the (n — 1)st equation for x,; and using the known value for x,, yields

x al Qy—1n+1 — Qu—1,nXn
n-—l —tr—— o = %
Ay—1 n-1

Continuing this process, we obtain

n
_ Ginel — (@i Xign o+ @inXa)  Ginl — 2 jeis1 Gii%)
j - 4
@i ajj

foreachi=n—-1,n-2,...,2,1.

The procedure will fail if at the ith step the pivot element a;; is zero, for then either
the multipliers ms; = a; /a;; are not defined (this occurs if a;; = 0 for some i < n) or the
backward substitution cannot be performed (if a,, = 0). This does not necessarily mean
that the system has no solution, but rather that the technique for finding the solution must
be altered by interchanging rows when a pivot is 0.

Program GAUSELG61 incorporates row interchanges when required. An illustration is
given in the following example.

Example 2 Represent the linear system

Exry xi— xa+2x— x4= -8,
Ey: 2x —2x5 4+ 3x3 — 3x4 = =20,
Ei: x4+ x4 13 = =2,
Eq! X — X2+ 4x3 + 31‘1 = 4o
as an augmented matrix and use Gaussian elimination to find its solution.

Solution The augmented matrix is

1, =1 & =1 i =8
s 2 -2 3 -3 : -2
=g L gE =2
1 -1 4 3 4
Performing the operations

(Ex — 2E)) — (E2), (E3 —E) — (E3), and (E4— E)) —> (Ey),

gives the matrix
1 -1 2 -1 : -8
0 0 -1 -1 -4
002 =1 1% 8§
The pivot element for a specific 0 @ 2 412
column is the entry that is used to
place zeros in the other entries in The new diagonal entry as», called the pivot element, is 0, so the procedure cannot
that column. continue in its present form. But operations (£;) <> (E;) are permitted, so a search is made
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6.2 Gaussian Elimination 235

of the elements ai; and a4 for the first nonzero element. Since asp # 0, the operation
(E;) <> (E3) is performed to obtain a new matrix,

1 —=F B S =8
0 2 =1 1% 6
0: 9 =t =7 &4
0 0 2 4 312

Since x; is already eliminated from E5 and E4, the computations continue with the operation
(Es +2E3) — (E4), giving

I =1 & =1 =8
0 2 -1 1 i @
0 0 =1 =1 :—4
0O 0 0 2 : 4

AW _

The matrix is now converted back into a linear system that has a solution equivalent to the
solution of the original system and the backward substitution is applied:

Xy = E :2,
s
_[6— x4 — (=1)xs] _
n=——77"-—=3
2
8= (=Dxa—2x— (—Dxsl _
X = =7, n

1

To define the initial augmented matrix in MATLAB, which we will call AA, we enter
the matrix row by row. A space is placed between each entry in a row, and the rows in AA
are separated by a colon. So, for the matrix in Example 2 we have

Ak=[1-12-1-8; 2-23-3~20;1110-2;1~1434]

MATLAB responds with
1 -1 2 -1 -8
2 -2 3 -3 -2
=149 11 o =8
1 -1 4 3 4

To perform the operation (E; +mE;) — (E;) in MATLAB we use the command
AA(j,:) = AA(F,:) + m * AA(L,:)

The notation AA(k,1) refers to entry in the kth row and /th column. The use of : in
MATLAB refers to multiplying an entire row or column. For example, multiplying the kth
row by m is done with m *AA (k, : ). Similarly, multiplying the Ith column by m would be
done with m*AA(:,1). So the next command subtracts twice the first row of AA from the
second row.

AA(2,:) = AA(2,:)-2%AA(1, )
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236 CHAPTER 6 = Direct Methods for Salving Linear Systems

which gives
3 2 % B
0 0 -1 -1 -4
A= 140 1 § 8 =2
1

-1 4 3 4

We then subtract the first row of AA from the third row, followed by the subtraction of the
first row from the fourth row with

AA(3,:) = AA(3,:)-AA(1,D)
and

AAC4,:) = AA(4,:)-AA(1,:)

This gives
1 -1 2 -1 -8
B Bey i
M=18 2.1 1 &
0 0 2 4 12

The variable x; has now been eliminated from the rows corresponding to the second,
third, and fourth equations. Since a»s is zero, we need to interchange rows to move a nonzero
entry to ap;. To interchange rows 2 and 3, we store row 2 in a temporary row vector B, move
row 3 to row 2, and then more the temporary row vector B to row 3. This is done with

B = AA(2,:)
AA(2,:) = AA(3,:)
AA(3,:) = B

The result is

1 -1 2 -1 -8
0 & <i 1 ¥
A= d Bl 1 -1 -8
0 0 2 4 12

The final operation in Gaussian elimination for this matrix is to add 2 times the third row
to the fourth row with

AA(4,:) = AA(4,:)+2%AA(3,:)
This produces

-1 2 -1 -8
2 -1 1 6
0 -1 -1 —4
g 8 2 4

AA =

(== =

To perform the backward substitution we need to define the vector x that will contain the
solution. We initialize a vector x as the 0 vector and will replace these entries as we progress
through the backward substitution.

x=[0000]
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6.2 (Gaussian Elimination 237

Now we replace the 0 in the fourth column of x with
x(4) = AA(4,5)/AA(4,4)
which gives

x= 0002
Then

x(3) = (AA(3,5) - AA(3,4)*x(4))/AA(3,3)

gives
x=0022
x(2) = (AA(2,5) - (AA(2,3)*x(3)+AA(2,4)*x(4)))/AA(2,2)
gives
x=0322
and

x(1) = (AA(1,5) - (AA(1,2)#x(2)+AA(1,3)*x(3)+AA(1,4)*x(4)))/AA(1,1)
gives the final solution
x=-7322

which corresponds to x) = =7, x3 =3, 23 =2, and x4 = 2.

Example 2 illustrates what is done if one of the pivot elements is zero. If the ith pivot
element is zero, the ith column of the matrix is searched from the ith row downward for
the first nonzero entry, and a row interchange is performed to obtain the new matrix. Then
the procedure continues as before. If no nonzero entry is found the procedure stops, and
the linear system does not have a unique solution. It might have no solution or an infinite
number of solutions.

Operation Counts

The computations in the program are performed using only one n x (n + 1) array for
storage. This is done by replacing, at each step, the previous value of a;; by the new one. In
addition, the multipliers are stored in the locations of a;; known to have zero values—that
is, wheni < nandk =i+1,i42,...,n. Thus, the original matrix A is overwritten by the
multipliers below the main diagonal and by the nonzero entries of the final reduced matrix
on and above the main diagonal. We will see in Section 6.5 that these values can be used to
solve other linear systems involving the original matrix A.

Both the amount of time required to complete the calculations and the subsequent
round-off error depend on the number of floating-point arithmetic operations needed to
solve a routine problem. In general, the amount of time required to perform a multiplication
or division on a computer is approximately the same and is considerably greater than
that required to perform an addition or subtraction. Even though the actual differences
in execution time depend on the particular computing system being used, the count of
the additions/subtractions are kept separate from the count of the multiplications/divisions
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238 CHAPTER 6 = Direct Methods for Salving Linear Systems

because of the time differential. The total number of arithmetic operations depends on the
size n, as follows:

3
Multiplications/divisions: % 0= g
= % n* n? 5n
Additions/subtractions; st %

For large n, the total number of multiplications and divisions is approximately n* /3, that
is, O(n*), as is the total number of additions and subtractions. The amount of computation,
and the time required to perform it, increases with n in approximate proportion to n° /3, as
shown in Table 6.1.

Table 6.1

n Multiplications/Divisions Additions/Subtractions
3 17 11
10 430 375
50 44,150 42,875
100 343,300 338,250

EXERCISE SET 62

1. Obtain a solution by graphical methods of the following linear systems, if possible.

a Hn+=3, b x+4+20n=0
x— x2=0. xn— =0
C. x4+ 2x: =13, d. x4+ 2, =3,
2x; + 4x;, =6. —2x; — dx; = 6.
e .‘E|+2.Xz=0. f. 2;(!+ xZ:—]_‘
2x; +4x;, =0. x4+ =2
Xy - 3XQ =3
g 2o+ xp=-1, h 20+ mt+a=l,
4x) + 2 = =2, 2xy+4dx; —x3=-1.
x| = 3.\'2 =35.

2. Use Gaussian elimination and two-digit rounding arithmetic 1o solve the following linear systems.
Do not reorder the equations. (The exact solution to each systemis x; = 1, x; = —1, 23 =3.)
a. 4X|- x; + X;'—"B, b. 4).';4'- x3+1:c3:9,

20+ 52+ 2x3 =3, 2x1+4x2 — xa=-5,
x)+2x +4x:=11. X1+ x2—3x3=-9.

3.  Use Gaussian elimination to solve the following linear systems, if possible, and determine whether
row interchanges are necessary:
a. X — X3+ 3}.’3 =2,
I =3+ 13=-1,

0+ x =3.
b. Zx; —1.5X2+3X5=l|
=X +2x; =3,

4x; —4.5x; + 5x; = 1.
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6.2 (Gaussian Elimination 239

C. 2X1 =3,
X + 1.5x; =4.5,
—3x; + 0.5x; = —6.6,
le o sz + X3+ x4= 0.8.
d. X —%114'13 =4,
2 — x;— X34 x =35,
X+ x =2,

X =i+t x =5
e. Xi+x2 + =2,
2x1+xz— x3+ qul'
41[ -Xy - 213 +2¥.1:0,
3x; —xp — x3 4+ 2x,=-3.
f. X1+ x + x=2,
In+ - n+ =1,
—xy+ 2+ 3% — xa=4,
Iry— x— x3+2x,=-3.
4.  Use MATLAB with long format and Gaussian elimination to solve the following linear systems.
a x4+ éxz + %X3 =9,
In+in+in=8
i+ x4 =8
b.  3.333x; + 15920x; — 10.333x; = 15913,

2.222% + 1671x; + 9.612x; = 28.544,
1.5611x; + 5.1791x; + 1.6852x; = 8.4254.

1 1 1 1
e ntsntiut =g,
1 1 1 £
73X + iI;r-f' ;Ia"‘ X3 =
%I| + ix;-i— %A’} + éx.;

B 1

Mt gt i =
d 2+ xn— xmt+xa-—3x=17,
x| + 20 —xs 4+ xs=12,
25— it~ m==5
I+ xz—4x + S5x5 =6,
X — Xz— Xx3—x3+ xs=3
5.  Given the linear system

2x) — bax =13,
Jax;— xn= %
a.  Find value(s) of & for which the system has no solutions.
b.  Find value(s) of o for which the system has an infinite number of solutions.
c. Assuming a unique solution exists for a given o, find the solution.
6.  Given the linear system

- nntoax=-2,
—x1 +2x; —ax3 =3,
axi+ x4+ x3=2.
a.  Find value(s) of o for which the system has no solutions.
b.  Find value(s) of a for which the system has an infinite number of solutions.
¢.  Assuming a unigue solution exists for a given e, find the solution.

7. Suppose that in a biological system there are n species of animals and m sources of food. Let x;
represent the population of the jth species for each j = 1,...,n; b; represent the available daily
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supply of the ith food; and a;; represent the amount of the ith food consumed on average by a member
of the jth species. The linear system

anxi + apxz+ -+ anxs = b,
@nxy + anx: + -+ aunx, = b,

Ami X1 + Amaxz + -+ F QuaXn = b

represents an equilibrium where there is a daily supply of food to precisely meet the average daily
consumption of each species.

a. Let
x = (x;) = [1000, 500, 350, 400}, and b = (b;) = (3500, 2700, 900]. Is there sufficient food
to satisfy the average daily consumption?

b.  What is the maximum number of animals of each species that could be individually added to the
system with the supply of food still meeting the consumption?

¢.  If species 1 became extinet, how much of an individual increase of each of the remaining species
could be supported?

d. If species 2 became extinct, how much of an individual increase of each of the remaining species
could be supported?

8. A Fredholm integral equation of the second kind is an equation of the form

cown
- e
— kD

1
A=[a;l=| 1
0

B
u(x) = f(x) + f K(x, Qu(n)dt,

where a and b and the functions f and K are given. To approximate the function u on the interval
[a, b], a partition xp = @ < Xy < +++ < Xpp_) < X,, = b is selected and the equations

b
u(x,-):f{:c,—)—i—f K(x;, tu(t)dt, foreachi=0,...,m,
&

are solved for u(xp), u(x,), ..., u(x,). The integrals are approximated using quadrature formulas
based on the nodes xu, ..., &m. In our problem,a = 0,6 =1, f(x) = 2%, and K(x,t) ="',

a. Show that the linear system
1
u(0) = f(0) + i[x(ﬂ, 0u(0) + K(0, Du(1)],

1
#(1) = f(1) + FIK(1, 0u(0) + K(1, Du(1)]

must be solved when the Trapezoidal rule is used.
b.  Setup and solve the linear system that results when the Composite Trapezoidal rule is used with
n=4.

c.  Repeat (b) using the Composite Simpson’s rule.

- / 6.3 Pivoting Strategies

If all the calculations could be done using exact arithmetic, we could almost end the chapter
with the previous section. We now know how many calculations are needed to perform
Gaussian elimination on a system, and from this we should be able to determine whether
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