Iterative Methods for Solving Linear Systems

7.1 Introduction

The previous chapter considered the approximation of the solution of a linear system using
direct methods, techniques that would produce the exact solution if all the calculations
were performed using exact arithmetic. In this chapter we describe some popular iterative
technigues, which require an initial approximation to the solution. These methods are not
expected to return the exact solution even if all the calculations could be performed using
exact arithmetic. In many instances, however, they are more effective than the direct methods
because they can require far less computational effort and round-off error is reduced. This
is particularly true when the matrix is sparse—that is, when it has a high percentage of zero
entries.

Some additional material from linear algebra is needed to describe the convergence of
the iterative methods. Principally, we need to have a measure of how close two vectors are
to one another because the object of an iterative method is to determine an approximation
that is within a certain tolerance of the exact solution.

In Section 7.2, the notion of a norm is used to show how various forms of distance
between vectors can be described. We will also see how this concept can be extended to
describe the norm of—and, consequently, the distance between—matrices. In Section 7.3,
matrix eigenvalues and eigenvectors are described, and we consider the connection between
these concepts and the convergence of an iterative method.

Section 7.4 describes the elementary Jacobi and Gauss-Seidel iterative methods. By
analyzing the size of the largest eigenvalue of a matrix associated with an iterative method,
we can determine conditions that predict the likelihood of convergence of the method.
In Section 7.5 we introduce the SOR method. This is a commonly applied iterative tech-
nique because it reduces the approximation errors faster than the Jacobi and Gauss-Seidel
methods.

In Section 7.6 we discuss some of the concerns that should be addressed when applying
either an iterative or a direct technique for approximating the solution to a linear system.

The conjugate gradient method is presented in Section 7.7. This method, with precon-
ditioning, is the technique most often used for sparse, positive-definite matrices.

1.2 Convergence of Vectors
The distance between the real numbers x and y is |[x — y|. In Chapter 2 we saw that

the stopping techniques for the iterative root-finding techniques used this measure to es-
timate the accuracy of approximate solutions and to determine when an approximation

277

AR Righis Reserved. Maty ot e copied, scanned, o daplicated., in whole of in parl. Due to eleeironis tights, some third pary contens may be suppressed (rom e ¢Book andfor eChagreris). Bditorlal review has
onient does ol mataly affect the overall leaming expericnee. Cengage Loaming reverves the right s nemove additional contet s any time If subsergacnt fights resirctians require it



278 CHAPTER 7 = [lterative Methods for Solving Linear Systems

was sufficiently accurate. The iterative methods for solving systems of equations use
similar logic, so the first step is to determine a way to measure the distance between
n-dimensional vectors because this is the form that is taken by the solution to a system of
equations.

Vector Norms

Let B" denote the set of all n-dimensional column vectors with real number coefficients.
It is a space-saving convenience to use the transpose notation presented in Section 6.4
when such a vector is represented in terms of its components. Generally, we write the
vector

Xy

X2
x=| . a5 X = (X1, X2, %)

Xp

Vector Norm on R”
A vector norm on R” is a function, || - |, from R" into R with the following properties:
(i [x]| = 0forallx € R",
(i) [Ix|l =0ifandonlyifx=(0,0,...,0) =0,
(iii) [lex| = |a|||x|| foralla € R and x € ",
v) [x+yll < [Ix]| + [yl| forall x,y € R".

For our purposes, we need only two specific norms on R". (A third is presented in
Exercise 2.)
The I, and [, norms for the vector x = (x, x5, ... , x,)" are defined by

i 1/2
llxllz={§x;2} and  [[xllo = max |x;|.

The I; norm is called the Euclidean norm of the vector x because it represents the
usual notion of distance from the origin when x is in R' = R, B?, or R’. For example, the
I> norm of the vector X = (xy, X2, x3) gives the length of the straight line joining the points
(0, 0,0) and (xy, x3, x3); that is, the length of the shortest path between those two points.
Figure 7.1 shows the boundary of those vectors in R? and R that have I; norm less than 1.
Figure 7.2 gives a similar illustration for the /.. norm.

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
leemed S any suppressed content does aol mastlaly affoa the overall leaming expericnce. Congage Loaming feserves the right ki emove addltional contemt & any 1ime if subseguent rights resirctions sequire L



72 Convergence of Vectors 2719

Figure 7.1
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Example 1 Determine the /; norm and the [, norm of the vector x = (—1, 1, —2)".
Solution The vectorx = (—1, 1, —2)' in R? has norms

Ix]z = V(=12 + (1) + (=2)2 = /6
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280 CHAPTER 7 =

There are many forms of this
inequality, hence many
discoverers. Augustin Louis
Cauchy (1789-1857) describes
this inequality in 1821 in Cours
d'Analyse Algébrigue, the first
rigorous calculus book. An
integral form of the equality
appears in the work of Viktor
Yakovlevich Bunyakovsky
(1B04-1889) in 1839, and
Hermann Amandus Schwarz
(1843-1921) used a double
integral form of this inequality in
1885. More details on the history
can be found in [Stee].

Distance between Vectors

Iterative Methods for Solving Linear Systems

and
[xlloc = max{| — 1], [1}, | = 2]} = 2.

Notice that |||l < [|x[|z in this example. ]

Showing that [[X] s, = max;<;<, |x;| satisfies the conditions necessary for a norm on
R" follows directly from the truth of similar statements concerning absolute values of real
numbers. In the case of the [; norm, it is also easy to demonstrate the first three of the
required properties, but the fourth,

Ix+ylz < lIxll2 + lI¥ll2,

is more difficult to show. To demonstrate this inequality we need the Cauchy-Buniakowsky-
Schwarz inequality, which states thatforany x = (x1, x2, ... , x,) and y = (31, ya, - . . . ¥)'s

gley.-t = {gxﬁ}m {gyg}m_

With this it follows that ||x + y||z < ||x[|> + [|¥ll> because

n n n n n "
Ix+yl3= " x2+2> xy+d W=D X +2) luwl+Y 3
=1 i=1 i=l i=l1 i=1 =1
u " 12 ¢ n 12
- zxfn{zxs} {zys}
i=1 i=1

i=l

1.1

n
+ 5% = (Ixllz + llyll2)*-

r=l
Distance between Vectors in R"

The norm of a vector gives a measure for the distance between the vector and the origin, so
the distance between two vectors is the norm of the difference of the vectors.

Ifx = (x1,%2,... ,%,)" and y = (y15¥2, ..., ya)' are vectors in R", the I, and I
distances between x and y are defined by

o 112
— R _ = e
||x—y||z_{fz=]‘,txi y.}} and X =yl = max x; — .

Example 2
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The linear system
3.3330x; + 15920x; — 10.333x3 = 15913,
2.2220x; + 16.710x; + 9.6120x3 = 28.544,
1.5611x; +35.1791x; + 1.6852x3 = 8.4254

has the exact solution x = (x, x3, x3)" = (1, 1, 1)’, and Gaussian elimination performed
using five-digit rounding arithmetic and partial pivoting produces the approximate solution

X = (%, %, %)' = (1.2001, 0.99991, 0.92538)".

Determine the /> and [ distances between the exact and approximate solutions.
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72 Convergence of Vectors 281

Solution Measurements of x — X are given by
llx — &2 = [(1 — 1.2001)2 + (1 — 0.99991)2 + (1 — 0.92538)] "/*
= [(0.2001)* + (0.00009)* + (0.07462)*)'/* = 0.21356.
and
[x — &[loo = max{|1 — 1.2001], |1 — 0.99991], |1 — 0.92538|}
= max{0.2001, 0.00009, 0.07462} = 0.2001

Although the components %, and X; are good approximations to x; and xs, the component
X) is a poor approximation to xy, and |x; — X, | dominates both norms. ]

The distance concept in R is used to define the limit of a sequence of vectors., A
sequence {x*'}3%, of vectors in R” is said to converge to x with respect to the norm | - ||
if, given any & > 0, there exists an integer N (g) such that

[x* —x|| <& forallk > N(e).

Example 3 Show that

I
x® = (x®, 2P, 2®, 1P) = (1. a0 % %,e—k sink)
converges to x = (1,2, 0, 0) with respect to the [, norm.

Solution Let e > 0 be given. For each of the component functions,

klingcl =1, soaninteger N|(g) exists with |x§") - 1| <& forallk = N (e),
Jlim (2+1/k) =2, o an integer Na(e) exists with [x$9 —2| <& forallk = Na(e),
—+00
Jim 3/k* =0, soaninteger Na(e) exists with |x3” —0| <& forallk > Ns(e),
—00

Jim esink =0, soaninteger Ny(e) exists with |x{’ —0| <& forall k > Ny(e).
—+ 20

Let
N(eg) = max{N (&), N2(e), Na(e), Na(e)}.
Then when k = N(&), we have
I1x® — X]loo = max {|x{” — 1], |x$” = 2], [x{® — 0], |x{" —0[} <&,

so x*) converges to x. =

InExample 3 we implicitly used the fact that a sequence of vectors {x'*'}2° | convergesin
the norm |- || to the vector xif and only if, foreachi = 1,2, ... , n, the sequence {x¥}2° |
converges to x;, the ith component of X. This makes the determination of convergence for
the norm || - ||, relatively easy.

To show directly that the sequence in Example 3 converges to (1, 2, 0, 0)" with respect

to the I norm is quite complicated. However, suppose that x 1s a vector in R" and j is an
index with the property that

%]l oc =  max lxi] = |2
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282 CHAPTER 7 = [lterative Methods for Solving Linear Systems

Then
n

I3, = bx;* =x} < ) a7 = Ix|5 and llxll%—Z E x} = nxj = nlixil,.
i=l i=1 i=1

This gives the norm inequalities

Ixllo < lIxXll2 < v/ l[%lloo-

This implies that the sequence of vectors {x*} also converges to x in B" with respect to
[| - Iz if and only if limg_, .tf’" = x; foreachi = 1, 2,... , n, since this is when the
sequence converges in the [, norm.

In fact, it can be shown that all norms on R" are equivalent with respect to convergence;
that is,

® if |- | and || - | are any two norms on " and {x*}7° has the limit x with respect to
|| - ||, then {x®}2¢ | has the limit x with respectto | - ||".

Since a vector sequence converges in the /. norm precisely when each of its component
sequences converges, we have the following.

Vector Sequence Convergence
The following statements are equivalent:

(i) The sequence of vectors {x*} converges to x in some norm.
(ii) The sequence of vectors {x*} converges to x in every norm.
(iii) For each of the component functions x*’ of x¥, we have limy_, 0 x* = x;.

Matrix Norms and Distances

In the subsequent sections, we will need methods for determining the distance between
n x n matrices. This again requires the use of a norm.

Matrix Norm

A matrix norm on the set of all n x n matrices is a real-valued function, || - ||, defined
on this set, satisfying for all n x n matrices A and B and all real numbers o:

@ [Al=0,

(ii) ||A|| = 0,if and only if A is O, the matrix with all zero entries,
(i) (oAl = |eflAll
(v) [lA+ BJ <Al + B,

(v) [lAB| = |AllIB].

Every vector norm produces an A distance between n x n matrices A and B with respect to this matrix norm is
associated natural matrix norm. |A — B||. Although matrix norms can be obtained in various ways, the only norms we
consider are those that are natural consequences of a vector norm.
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72 Convergence of Vectors 283

Natural Matrix Norm

If || - || is a vector norm on ", the natural matrix norm on the set of n x n matrices
given by || - || is defined by

o Il Ax]l.

So, the [; and /., matrix norms are, respectively,

IIAII2="¥EJ=EIIIA!£H: (the/z norm) and [Afle = max | Ax]loc (the lo morm).

(1]
When n = 2 these norms have the geometric representations shown in Figures 7.3 and 7.4.

Figure 7.3
X2
X
% Ax for
T2 lxla=1
Ixll. = 1 Al
1
+1
x Ax
1 Il L i I
= X -2 -1 1 2 %
4+ -1
s |
1+ =2
Figure 7.4
X3
+3
Ax for
x[x=1
o) L
Ax
fIxll, =1
1
Al e
_1 X
k} | ) 1 2 -
=1
_3 <4
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284 CHAPTER 7 = Iterative Methods for Solving Linear Systems

The I, norm of a matrix has a representation with respect to the entries of the matrix
that makes it particularly easy to compute.

I Matrix Norm Characterization

n
Al = max 3 " la; -

J=3
Example 4 Determine || Al for the matrix
1 2 -1
A=|0 3 -1
5 =1
Solution We have
3 3
Dol =11+21+—1=4, ) layl=101+13+|-1] =4,
Jaal j=1
and
3
> lasil =151+ =1+ 1] =7.
Jj=1
S0 ||Allsc = max{4,4,7}=1T7. m

The I; norm of a matrix is not as easily determined, but in the next section we will
discover an alternative method for finding this norm.

EXERCISE SET 72

1.  Find ||x[|s and [x]|; for the following vectars.

o x=(3 _4|{)1;)' b. x=(2,1,-34)
¢. Xx= (sink,cosk, 2*) for a fixed positive integer k

d x=@/k+ 1), 2/k2 ke ) for a fixed positive integer &

a. Verify that || - [l is a norm for " (called the [ norm), where

Ixlh =3 Ixl.

i=l
b. Find ||x||, for the vectors given in Exercise 1.
3.  Show that the following sequences are convergent, and find their limits.
a. x®=(1/k e -2/
b. x% = (e*cosk, ksin(l/k),34+k"2)
o x* = (ke ¥, (cosk)/k, Vi +k —k)'
do = (e k=R, (434544 k= 1))
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1.3 Eigenvalues and Eigenvectors 285

4.  Find | - ||x for the following matrices.

10 15 b 10 0

0 1 ’ 15 1
p | 0 4 -1 7
c. -1 2 =1 d. -1 4 0
0 -1 2 -7 0 4

5.  The following linear systems Ax = b have x as the actual solution and X as an approximate solution.
Compute [|x — X/ and || A% — b ...

1 1 1
a =X+ =xp=—

2 3 6?'

+ =

3T e
5 (1 1y’
S AV

X = (0.142, —0.166)".

b. x +2x+3x=1,
20 + 3 4 dxy = =1,
3x, +4x +6x3=2,

x = (0, -7, 5),
% =(-0.33,-7.9, 58).

e O+2n+in=1l,
2x) + 3x; + dx; = —1,
3x) +4x; +6x;=2,

x = (0, -7, 5),
%= (=02,-7.5,54).

d.  0.04x; + 0.01x; — 0.01x; = 0.06,
0.2x; + 0.5x;— 02x3= 03,
04+ 2p+4+ dxy=11,
x = (1.827586, 0.6551724, 1.965517),
= (1.8, 0.64, 1.9)".
6. The !, matrix norm, defined by [|All, = rxr_lfii:l [lAx]l;, can be computed using the formula

Al = max " a1,
=1

1=isn

where the [, vector norm is defined in Exercise 2. Find the [ norm of the matrices in Exercise 4.
7. Show by example that | - |1@, defined by |iA|{@ = Ilmlx |aij|, does not define a matrix norm.
U et
8.  Show that || - ||x, defined by

" n

lAllo =" layl.
it

i=l j=

is @ matrix norm. Find || - ||y for the matrices in Exercise 4.
9.  Show thatif || - || is a vector norm on R”, then [|A| = max ;. ||Ax|| is a matrix norm.

‘ k 1.3 Eigenvalues and Eigenvectors

An n x m matrix can be considered as a function that uses matrix multiplication to take
m-dimensional vectors into n-dimensional vectors. So an n x n matrix A takes the set of
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286 CHAPTER 7 = Iterative Methods for Solving Linear Systems

n-dimensional vectors into itself. In this case certain nonzero vectors can have x and Ax
parallel, which means that a constant A exists with Ax = Ax, or that (A — AI)x = 0. There
is a close connection between these numbers A and the likelihood that an iterative method
based on A will converge. We will consider the connection in this section.

For a square n % n matrix A, the characteristic polynomial of A is defined by

p(A) =det(A —A~).

Because of the way the determinant of a matrix is defined, p is an nth-degree polynomial
and, consequently, has at most n distinct zeros, some of which might be complex. These
zeros of p are called the eigenvalues of the matrix A.

The result on page 256 in Chapter 6, then, implies that the following are equivalent:

® J is an eigenvalue of A,
e A — ) [ does not have an inverse,
® there exists a vector X # 0 with Ax = Ax,

o det(A —Al) =0.

Ifx is anonzero vector with Ax = Ax, then xis called an eigenvector of A corresponding
to the eigenvalue A. Note that if x is an eigenvector of A corresponding to the eigenvalue
The prefix eigen comes fromthe  # then any nonzero scalar multiple ox of x is also an eigenvector of A corresponding to A
German adjective meaning “to because
own™ and is synonymous in
English with the word A(ox) = a(Ax) = a(ix) = i(ax).
characteristic. Each matrix has

ihs v el e phiaedartitia If x is an eigenvector associated with the eigenvalue A, then Ax = Ax, so the matrix A

equstion, with comsspending takes the vector x into a scalar multiple of itself. When X is a real number and A > 1, A has
cigen- or characteristic values the effect of stretching x by a factor of A. When 0 < A < 1, A shrinks x by a factor of A.
and functions. When 4 < 0, the effects are similar, but the direction is reversed (see Figure 7.5).

Figure 75

(@ A>1 by 1>A>0 ) A<-—1 (d) -1<A<0
Ax
x X
Ax . x
Ax
Ax
Ax = Ax

Example 1 Determine the eigenvalues and corresponding eigenvectors for the matrix

2 00
A=11 1 2
P o~ 4
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Solution The characteristic polynomial of A is

22— 0 0
pA) = det(A — A1) = det I 2
1

=Y k=i
= - =TA24+16A—12) = —(A = 3)(A — 2)?,

s0 there are two eigenvalues of A: 4y =3 and A; = 2.
An eigenvector X; $ 0 corresponding to the eigenvalue A, = 3 is a solution to the
vector-matrix equation (A — 3. I)x, =0, so

0 -1 00 Xy —X)]
0 - 1 =2 2 . X2 = x —2X2+2.¥3 3
0 L —1 il x3 X —x+x3

which implies that x; = 0 and x; = x;. Any nonzero value of x; produces an eigenvector for
the eigenvalue A, = 3. For example, when x3 = 1 we have the eigenvector x; = (0, 1, 1)'.
Any eigenvector of A corresponding to A = 3 is a nonzero multiple of x,.

An eigenvector X» # 0 of A associated with the eigenvalue A, = 2 is a solution of the
system (A — 21)x =0, so

0 0 0 0 xy 0
0 = 1 -1 2 . X2 = X1 —Xx2 +ZI3
0 1 -1 2 X3 X — X3+ 2x3

In this case the eigenvector has only to satisfy the equation

x—x+2x=0,
which can be done in various ways. For example, when x; = 0 we have x; = 2x3, s0
one choice would be x; = (0, 2, 1)". We could also choose x; = 0, which requires that
x; = —2x3. Hence x3 = (=2, 0, 1)' gives a second eigenvector for the eigenvalue A, = 2,
one that is not a multiple of x,.

The eigenvectors of A corresponding to the eigenvalue A; = 2 generate an entire plane.
This plane is described by all vectors of the form

axy + fx3 = (=28, 20, a + B)’,

for arbitrary constants « and 8, provided that at least one of the constants is nonzero. =

The next example illustrates that even some very simple matrices can have no real
eigenvalues.

Example 2 Show that there are no nonzero vectors x in R? with Bx parallel to x if

01
#=[ 9 1]
Solution The eigenvalues of B are the solutions to the characteristic polynomial
0=dez(3—u)=det[ j _i ] =A+1,

so the eigenvalues of B are the complex numbers A; = i and A2 = —i. A corresponding
eigenvector x for A, needs to satisfy

lo]=[2 2][5]-[=22)
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288 CHAPTER 7 = Iterative Methods for Solving Linear Systems

that is, 0 = —ix; + a2, 80 x; = ix;, and an eigenvector for A; = i is (1,7)". In a similar
manner, an eigenvector for Ay = —i is (1, —i)".

If x is an eigenvector of B, then exactly one of its components is real and the other is
complex. As a consequence, there is no real constant % and nonzero vector x in R? with
Bx = Ax, and hence there is no nonzero vector x in R? with Bx parallel to x. ]

MATLAB provides methods to directly compute the eigenvalues and eigenvectors of
a matrix. We first define the matrix A by

A=[102;01~-1; -111]
The characteristic polynomial is determined with
p=poly(4)
giving
p = 1.0000 — 3.0000 6.0000 — 4.0000
The numbers are the coefficients of the characteristic polynomial in descending order, so
p(a) =23 —33%>+6L—4.
We can now compute the roots of the polynomial to obtain the eigenvalues with
roots (p)
The most direct way to obtain eigenvalues is with the eig command.
eig(A)
If we want the corresponding eigenvectors, we enter eig as
[v, D] = eig(a)

which produces the following matrix V and vector D. We have rounded the entries in V so
that it will display on one line.

V= -070710678 —0.70710678 0.70710678
0.35355339 + 0.00000000: 0.35355339 — 0.00000000;  0.70710678
—0.00000000 — 0.61237244i  —0.00000000 + 0.61237244i 0.00000000

D= 0.999999999999999 + 1.732050807568876i
0.999999999999999 — 1.732050807568876i
1.000000000000000

The columns of V' are eigenvectors of A corresponding to the eigenvalues in the rows of D.

The notions of eigenvalues and eigenvectors are introduced here for a specific compu-
tational convenience, but these concepts arise frequently in the study of physical systems. In
fact, they are of sufficient interest that most of Chapter 9 is devoted to their approximation.

Spectral Radius
The spectral radius p(A) of a matrix A is defined by
p(A) = max |A|, where A is an eigenvalue of A.

(Note: For complex A = & + i, we have [A| = (o? + g%)'/2)
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Example 3
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Determine the spectral radius of the matrices

2
A= |1
1

Solution In Example 1 we found that the eigenvalues of A were 4; =3 and A, = 2. So

00

1 2 andB:[?é]
-1 4 -

p(A) = max{|3], 2]} =3,

and in Example 2 we found that the eigenvalues of B were A; =i and A; = —i. So
p(B) = max{v12, /(-?} = 1. .

The spectral radius is closely related to the norm of a matrix.

I> Matrix Norm Characterization

If A is an n x n matrix, then

@ |lAll2 = [p(A"A)]'2;
(i) p(A) = || Al for any natural norm.

Example 4

The first part of this result is the computational method for determining the /; norm of
matrices that we mentioned at the end of the previous section.

1 Y 1
L2 1.
=1 1 2

Solution To apply part (i) of the [, Matrix Norm Characterization, we need to calculate
p(A'A), so we need the eigenvalues of A'A.
3 2 -1
2 6 4|
-1 4 5

T =Tl ¥ ki@
2 1 1 21 =
1 2 =1 L2
[3—-2 2 -1
O=det(A'A—Al)=det| 2 6—1 4

Determine the /; norm of

A=

-1 4 S5—A

=— A3+ 1432 — 422 = —A(A% — 144 + 42),

thenA = 0ori =7 ++/7. S0

IIAH;=.=\/p(A’AJ=\/max{0,7—ﬁ,7+ﬁ}=\/7+~ﬁa‘=3‘106. a
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290 CHAPTER 7 = [terative Methods for Solving Linear Systems

The operations in Example 4 can also be performed using MATLAB. First define
A=[1LE0; 121;-11%]
then compute its transpose and determine A’ A, and the eigenvalues of A'A
u = eig(A’*4)
This gives the eigenvalues as

« = 0.000000000000003
4.354248688935409
9.645751311064592
The square root of the largest eigenvalue is the /5 norm of A
sqrt(u(3))

which MATLAB gives as 3.105760987433610.
The I; norm of A can also be directly computed with

norm(A)

The I norm of A is found with norm(A, Inf).

Convergent Matrices

In studying iterative matrix techniques, it is of particular importance to know when the
powers of a matrix become small (that is, when all of the entries approach zero). We call
an n X n matrix A convergent if, foreachi =1,2,... ,mand j = 1, 2,... , n, we have

. k i -
lim (4%);; =0.

Example 5 Show that

Bl B3
(LT =]
—

is a convergent matrix.

Solution Computing the powers of A, we obtain:

1 1 1
: 0 z = 0
2
A:[: l]' A3=|:;. .'.]’ At = 115 _!,,}'
i a % 8 8 16
and, in general,
g [@r 0
=5 G
So A is a convergent matrix because
. Y .
klinalc(i) =0 imd om0 "
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1.3 Eigenvalues and Eigenvectors 291

The following important connection exists between the spectral radius of a matrix and

the convergence of the matrix.

Convergent Matrix Equivalences

The following are equivalent statements:

@
(i)
(iii)
(iv)
v

A is a convergent matrix.

lim,_, »; || A"|| = 0, for some natural norm.
limy, s [|A"|| = 0, for all natural norms.
p(A) < 1.

lim,_, .. A"x = 0, for every x.

EXERCISE SET 73

5.
6.

Compute the eigenvalues and associated eigenvectors of the following matrices.

[ 2 -1 0 1
) z} i 11]
) 1} 1 1}
2 d.
& -2 -2
TR
[2. 1 0 [-1 2 0
e 1 2 0 f. 0 3 4
|0 0 3 | 0 0 7
Fy 1 4 i 2 -1
g 2. 3 2 h. 1 -2 3
1 Wi (U L 0 4
Find the spectral radius for each matrix in Exercise 1.
Show that
1 0
Ar= | 4 3
4 2
is not convergent, but
1o
w=[LY]

is convergent.

Which of the matrices in Exercise 1 are convergent?
Find the || - [|; norms of the matrices in Exercise 1,

Show that if A is an eigenvalue of a matrix A and || - || is a vector norm, then an eigenvector x associaled

with A exists with x| = 1.

Find 2 x 2 matrices A and B for which p(A + B) > p(A) + p(B). (This shows that p(A) cannot be

@ maltrix norm.)
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292 CHAPTER 7 = [lterative Methods for Solving Linear Systems

8. Show that if A is symmetric, then [|A]|; = p(A).

9.  Let A be an eigenvalue of the n % n matrix A and x # 0 be an associated eigenvector.
a. Show that A is also an eigenvalue of A’.
b. Show that for any integer k > 1, A* is an eigenvalue of A* with eigenvector x.
c.  Show that if A" exists, then 1/A is an eigenvalue of A~! with eigenvector x.
d. Leto s A be given. Show thatif (A — /)~ exists, then 1 /(L — ) is an eigenvalue of (A —aJ) ™!

with eigenvector x.
10.  In Exercise 8 of Section 6.4, it was assumed that the contribution a female beetle of a certain type

made to the future years’ beetle population could be expressed in terms of the matrix

00 6
A=|1 00
o 1o

where the entry in the ith row and jth column represents the probabilistic contribution of a beetle of

age j onto the next year’s female population of age i.

a. Does the matrix A have any real eigenvalues? If so, determine them and any associated eigen-
veclors.

b. If a sample of this species was needed for laboratory test purposes that would have a constant
proportion in each age group from year to year, what criteria could be imposed on the initial
population to ensure that this requirement would be satisfied?

‘ 74 The Jacobi and Gauss-Seidel Methods

In this section we describe the elementary Jacobi and Gauss-Seidel iterative methods. These
are classic methods that date to the late eighteenth century, but they find current application
in problems where the matrix is large and has mostly zero entries in predictable locations.
Applications of this type are common, for example, in the study of large integrated circuits
and in the numerical solution of boundary-value problems and partial-differential equations.

General Iteration Methods

An iterative technique for solving the n x n linear system Ax = b starts with an initial
approximation x'”’ to the solution x and generates a sequence of vectors {x*'}2° that
converges to X. These iterative techniques invol ve a process that converts the system Ax = b
into an equivalent system of the form x = Tx + ¢ for some n x n matrix T and vector ¢.

After the initial vector x(" is selected, the sequence of approximate solution vectors is
generated by computing

x® = Tx*-D pe

foreachk=1,2,3,....

The following result provides an important connection between the eigenvalues of the
matrix T" and the expectation that the iterative method will converge.

Convergence and the Spectral Radius

The sequence
x® = 7x®D 4 ¢

converges to the unique solutionof x = 7'x + ¢ foranyx” in R" if and only if p(7) < 1.
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