
C H A P T E R

Iterative Methods for Solving Linear Systems

7.1 Introduction

The previous chapter considered the approximation of the solution of a linear system using

direct methods, techniques that would produce the exact solution if all the calculations
were performed using exact arithmetic. In this chapter we describe some popular iterative

techniques, which require an initial approximation to the solution. These methods are not

expected to return the exact solution even if all the calculations could be performed using

exact arithmetic. In many instances,however, they are moreeffective than the direct methods
because they can require far less computational effort and round-off error is reduced. This

is particularly true when the matrix is sparse—that is, when it has a high percentage of zero
entries.

Some additional material from linear algebra is needed to describe the convergence of

the iterative methods. Principally, we need to have a measure of how close two vectors are
to one another because the object of an iterative method is to determine an approximation

that is within a certain tolerance of the exact solution.
In Section 7.2, the notion of a norm is used to show how various forms of distance

between vectors can be described. We will also see how this concept can be extended to

describe the norm of—and, consequently, the distance between—matrices. In Section 7.3,

matrix eigenvalues and eigenvectors are described, and we consider the connection between
these concepts and the convergence of an iterative method.

Section 7.4 describes the elementary Jacobi and Gauss-Seidel iterative methods. By

analyzing the size of the largest eigenvalue of a matrix associated with an iterative method,

we can determine conditions that predict the likelihood of convergence of the method.
In Section 7.5 we introduce the SOR method. This is a commonly applied iterative tech-
nique because it reduces the approximation errors faster than the Jacobi and Gauss-Seidel

methods.
In Section 7.6 we discuss some of the concerns that should be addressed when applying

cither an iterative or a direct technique for approximating the solution to a linear system.
The conjugate gradient method is presented in Section 7.7. This method, with precon-

ditioning, is the technique most often used for sparse, positive-definite matrices.

7.2 Convergence of Vectors

The distance between the real numbers x and y is \x — y \. In Chapter 2 we saw that

the stopping techniques for the iterative root-finding techniques used this measure to es-
timate the accuracy of approximate solutions and to determine when an approximation

277

Copyright 2012 Cengagc Lcarnlag. AI Right* Reserved May rsca be copied. scanned.or duplicated.'» whole or m pan. Doc to electronic rights.tone third party content nu> be suppreved Trom the eBook and/or eChaptcnul. Editorial review h*>

deemed that any vupprc'-cd content dee*, not material!) affect the overall learning experience.Cengage Learning reserves the right to rerrx'cr additional conceal at any time if subvcijjcni rights restrictions require it.



278 C H A P T E R 7 Iterative Methods for Solving Linear Systems

was sufficiently accurate. The iterative methods for solving systems of equations use
similar logic, so the first step is to determine a way to measure the distance between

n-dimensional vectors because this is the form that is taken by the solution to a system of

equations.

Vector Norms

Let R" denote the set of all n-dimcnsional column vectors with real number coefficients.
It is a space-saving convenience to use the transpose notation presented in Section 6.4
when such a vector is represented in terms of its components. Generally, we write the

vector

x =

*i

x2

Xn

as % = (xUX 2 xny.

Vector Norm on R"

A vector norm on R" is a function, || •||, from R" into R with the following properties:

(i) ||x|| > 0 for all x RB,

(ii) ||x|| = 0 if and only if x = (0, 0 0)' = 0,

(iii) ||orx|| = |a|||x|| for all cr e R and x e Rn ,

(iv) ||x + y|| < ||x||+ ||y||for all x, y G R".

For our purposes, we need only two specific norms on Rn. (A third is presented in
Exercise 2.)

The /2 and lx norms for the vector x = (JCJ ,*2, "." . x„Y are defined by

M 2 =
n

2£*.:
i=l

1/2

and II x||oc, max M .
1<i <n

The /2 norm is called the Euclidean norm of the vector x because it represents the

usual notion of distance from the origin when x is in R 1 = R, R2, or R3. For example, the
/2 norm of the vector x = (*i , X 2 ,*3)' gives the length of the straight line joining the points
(0, 0, 0) and (xj, X 2 ,*3); that is, the length of the shortest path between those two points.
Figure 7.1 shows the boundary of those vectors in R2 and R3 that have /2 norm less than 1.
Figure 7.2 gives a similar illustration for the loo norm.
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7.2 Convergence of Vectors 279

Figure 7.1
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Example 1 Determine the /2 norm and the /«. norm of the vector x = ( — 1 , 1 , —2)'.

Solution The vector x = (— 1 , 1 , —2)' in R 3 has norms

M2 = \/(-l)2 + ( l)2 + (-2)2 = V6
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280 C H A P T E R 7 Iterative Methods for Solving Linear Systems

and

||x||00 = max{|- lUlU- 2|) = 2.

Notice that||x||oo < l|x|b in this example.

There are many forms of this

inequality, hence many

discoverers. Augustin Louis

Cauchy (1789-1857) describes

this inequality in 1821 in Cours

d 'Analyse Alg£brique, the first

rigorous calculus book. An

integral form of the equality

appears in the work of Viktor

Yakovlevich Bunyakovsky

(1804-1889) in 1859. and

Hermann Amandus Schwarz

(1843-1921) used a double

integral form of this inequality in

1885. More details on the history

can be found in (Steel.

Showing that \\x \\oc = ntaxi<i<n |*,| satisfies the conditions necessary for a norm on
R" follows directly from the truth of similar statements concerning absolute values of real
numbers. In the case of the l2 norm, it is also easy to demonstrate the first three of the

required properties, but the fourth,

ll*+ ylb < IWI2 + llylb.
is more difficult to show.To demonstrate this inequality we need the Cauchy-Buniakowsky-
Schwarz inequality, which states that forany x = (*, ,*2 » • • • ,*„)' and y = (y,, y2. • • • . y

*
)',

" ( " 'i 1/2 r » 11/2

With this it follows that ||x + yH 2 < llxlb + llylb because

(7.1)

n n n n n n

ii* + yill = E*? + 2E x
‘
y
‘ + E -E x

‘
+ 2E 1*» 1 + Ey?

1=1 i= l i= l i= l i = l i= l

n

« =1

n

E*
2

1=1

1/2 n

i= l

+ E^ = ( iix|i 2 + |iy^
2 -

i=l

Distance between Vectors in Rn

The norm of a vector gives a measure for the distance between the vector and the origin, so
the distance between two vectors is the norm of the difference of the vectors.

Distance between Vectors

If x = (*, ,*2,... ,*„ )' and y = (y,, y2, ... , y„)' are vectors in R", the l2 and lx
distances between x and y are defined by

x- ylb = -
n

E<*‘
-*>2

L 1-1

1/2

and ||x — y||oc max|Xi —
1<i<n

y« l -

Example 2 The linear system

3.3330*1 + 15920*2 - 10.333*3 = 15913,

2.2220*, + 16.710*2 + 9.6120*3 = 28.544,

1.5611*, + 5.1791*2 + 1.6852*3 = 8.4254

has the exact solution x = (*, ,*2,*3) f = (1, 1, 1)', and Gaussian elimination performed
using five-digit rounding arithmetic and partial pivoting produces the approximate solution

x = (*,,*2, x3)' = (1.2001, 0.99991, 0.92538)'.

Determine the l2 and lx distances between the exact and approximate solutions.
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7.2 Convergence of Vectors 281

Solution Measurements of x — x are given by

||x-t||2 = [(1- 1.2001)2 + (1 — 0.99991)2 + (1 — 0.92538)2]
1/2

= [(0.2001)2
+ (0.00009)2 + (0.07462)2]'72 = 0.21356.

and

||x- x||oo = max{11- 1.20011,|1-0.99991|, |1- 0.92538|}

= max{0.2001, 0.00009, 0.07462( = 0.2001

Although the components x2 and x3 are good approximations to X 2 and x3, the component
Jcj is a poor approximation to x\t and|xi - x \|dominates both norms.

The distance concept in R" is used to define the limit of a sequence of vectors. A
sequence {x ( A ) )^= 1 of vectors in Rn is said to converge to x with respect to the norm || • ||

if, given any e > 0, there exists an integer N (e ) such that

||xU) — x|| < e for all k > N (e ).

Example 3 Show that

x(*>
_zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(JQ J*> r <*>— \X 1 » x2 » *3

„ 1 3
2+

k' V '
e-k sin it)'

converges to x = (1, 2, 0, 0)' with respect to the lx norm.

Solution Let e > 0 be given. For each of the component functions,

lim 1 = 1,
k-* OC

so an integer N\ (e) exists with for all k > /V, (e),

lim (2 + 1/ it) = 2,
K —* -V

so an integer N2(£) exists with N*’-2\ < e for all k > N2(e\

lim 3/ fc2 = 0.
k-*oc

so an integer N$(e ) exists with 1*1*’- 0| < e for all k > /V3(e),

lim e~k sin k = 0, so an integer NA(e ) exists with 14** - 0| < e for all k > 7V4(e).

Let

N (e ) = max( A7, (e), N2(e ), tf3(e). N^e ) }.

Then when k > 7V(e), we have

11*
(*) - x||oo = max{|x}*) - l|, \xl2

k ) -2|, -0|, \x\
k ) -0|} < e,

so x(A:) converges to x.

In Example 3 we implicitly used the fact that a sequenceof vectors{x(i) converges in

the norm || • \\ x to the vector x if and only if, for each i = 1, 2, ... , n ,the sequence
converges to xM the ith component of x. This makes the determination of convergence for
the norm || • 1«, relatively easy.

To show directly that the sequence in Example 3 converges to (1, 2, 0, 0)' with respect
to the /2 norm is quite complicated. However, suppose that x is a vector in Rrt and j is an
index with the property that

11 x 11 ,» = max |x4|=|x,|.
i= l n
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282 CHAPTER 7 • Iterative Methods for Solving Linear Systems

Then

n n n

11*11« = l*fl2 = x ) < JZ -r? = llxlli and INI* = ^2 x f < Yixl = n x ) = nHxlllo -
1=1 1= 1 1=1

This gives the norm inequalities

Moo M2 < V« l|x|loo -

This implies that the sequence of vectors {x( A )} also converges to x in 3R" with respect to

|| • ||2 if and only if lim*.^x j k )

= x t for each i = 1, 2, . . . , n, since this is when the
sequence converges in the / <*

, norm.

In fact, it can be shown that all norms on R" are equivalent with respect to convergence;
that is,

• if || • || and || • ||' are any two norms on R" and {x (i )}£i , has the limit x with respect to

|| • ||, then {x(A ) }^j has the limit x with respect to || • ||\

Since a vector sequence converges in the 1& norm precisely when each of its component

sequences converges, we have the following.

Vector Sequence Convergence

The following statements are equivalent:

(i) The sequence of vectors {x(A ) } converges to x in some norm.

(ii) The sequence of vectors {xU ) } converges to x in every norm.

(iii) For each of the component functions x f* }

of x( k ) , we have lim*̂ *
, x f k )

= x,-.

Matrix Norm

Matrix Norms and Distances

In the subsequent sections, we will need methods for determining the distance between
n x n matrices. This again requires the use of a norm.

A matrix norm on the set of all n x n matrices is a real-valued function, || • ||, defined
on this set, satisfying for all n x n matrices A and B and all real numbers or :

(i) l|A || > 0,

(ii) ||A || = 0, if and only if A is 0 , the matrix with all zero entries,

(iii) ||or A|| = |ar|||A||,

(iv) |A +*|<|A|| + m,

(v) ||Afl || < ||A|||*|.

Every vector norm produces an

associated natural matrix norm.
A distance between n x n matrices A and B with respect to this matrix norm is

|| A — Z?||. Although matrix norms can be obtained in various ways, the only norms wc
consider are those that are natural consequences of a vector norm.
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7.2 Convergence of Vectors 283

Natural Matrix Norm

If || • || is a vector norm on R\ the natural matrix norm on the set of n x n matrices

given by || • || is defined by

||A|| = max ||Ax||.

So, the /2 and lx matrix norms are, respectively,

||A||2 = max ||Ax||2 (the /2 norm) and 11 /11100 = max ||/\x||oc (thelxnorm).
11*12=1 11*130=1

When n — 2 these norms have the geometric representations shown in Figures 7.3 and 7.4.

Figure 7.3
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284 C H A P T E R 7 Iterative Methods for Solving Linear Systems

The loc norm of a matrix has a representation with respect to the entries of the matrix
that makes it particularly easy to compute.

Matrix Norm Characterization

Mil*,
n

max
1<i<n

Example 4 Determine ||A|oo for the matrix

A =
1 2 -1
0 3 -1
5 -1 1

Solution We have

3

X>i;l = W + l2l + l -
j=l

1 1 = 4,

3

5>2,|= |0| + |3| + |- 1| = 4,

7=1

52 l“3> l = 151 + I - 1| -H 111 = 7.

7-1

So \\ A \\ X = max{4, 4, 7} = 7.

The /2 norm of a matrix is not as easily determined, but in the next section we will

discover an alternative method for finding this norm.

E X E R C I S E S E T 12

1. Find ||xHoc and ||x||2 for the following vectors.

a. x = (3,-4,0,1)' b- x = (2.1,-3, 4)'
c. x = (sin k , cos k , 2k )' for a fixed positive integer k

d. x = (4/( jfc 4- 1), 2/ A:2, k 2e~k )‘ for a fixed positive integer k

2. a. Verify that|| • ||i is a norm for R" (called the l\ norm), where

n

l|i||, = X>|.
4=1

b. Find ||x|| t for the vectors given in Exercise 1.
3. Show that the following sequences are convergent, and find their limits.

a. x<*> = (1/ Jfc,e1"*, —2/ k2 )1

b. xik ) = ( e k cos A:, /:sin(l/k), 3 + k 2 )‘
c. x(*’ = ( ke ~ k‘ , (cosA:)/ A:, Jk 2 + k — A:) *

d. x(A) = (e l / k , (A:2 + 1)/(1- A:2), (1/ A:2)(1 + 3 + 5 + .. * + (2A:- 1)))'
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7.3 Eigenvalues and Eigenvectors 285

4. Find ||• ll* for the following matrices.

5.

r io is i
a- [ 0 . J
C.

2 -1 0

-1 2 -1
0 -1 2

b.

d.

10

15

4

-1

-7

0
1

-1
4
0

7

0
4

The following linear systems Ax = b have x as the actual solution and k as an approximate solution.
Compute ||x - xll*, and ||Ax — bll^

.

1 1 1
a.

2*' +
3*2 = 63’

1 1 1

3*1 +
4*2 = 168 -

X - (H)'
k = (0.142, -0.166)'.

b. JCJ + 2x2 + 3*3 = 1,

2x i -f - 3x2 4" 4x3 = —1*

3*i + 4x2 + 6x3 = 2,
x = (0,-7, 5)',
x = (-0.33,-7.9, 5.8)'.

c. x\ + 2X 2 + 3X3 = 1,

2x|+ 3X2 + 4*3 = 1,

3*1 + 4X2 + 6x3 = 2,

x = (0,-7, 5)',
x = ( —0.2,-7.5, 5.4V.

d. 0.04xj -I- 0.01x2 - O.OIxj = 0.06,

0.2xj + 0.5X2 - 0.2x3 = 0.3,

X\ -+ 2x2 4x3 = 11,
x = (1.827586, 0.6551724, 1.965517)',

* = (1.8, 0.64, 1.9V.
6. The /1 matrix norm, defined by||A||1 = max ||Ax||1, can be computed using the formula

Xij=l

/1

Mill = max Via,, I,

where the l\ vector norm is defined in Exercise 2. Find the /1 norm of the matrices in Exercise 4.

7. Show by example that || • ||,v, defined by MIL, = ^
ax |a <;|, does not define a matrix norm.

8. Show that||• ||®, defined by

n n

1=1 J m1

is a matrix norm. Find || • ||® for the matrices in Exercise 4.
9. Show that if || • || is a vector norm on Rn, then ||A|| = max si

_, ||Ax|| is a matrix norm.

7.3 Eigenvalues and Eigenvectors

A n n x m matrix can be considered as a function that uses matrix multiplication to take

m-dimensional vectors into n-dimensional vectors. So an n x n matrix A takes the set of

Copyright 2012 Cc«£»fc Learnin*. AI R.(hu Reversed May not be copied. wanned. o* duplicated.» whole oe m pan. Doc to electronic ilfhu.xvtic third pony content may be supposed rtom the eBook and/or cCh<xcn» l . Editorial roiew h*>

deemed Cut any vupprccscd content deev not imxttaly alTect the overall leamir*experience. Ccfiitjpc [.camon roentt the ri|>ltt 10 remote additional conceal at any time i i vutoeqjroi nghtv toirk-tionv require It.



286 C H A P T E R 7 Iterative Methods for Solving Linear Systems

n-dimensional vectors into itself. In this case certain nonzero vectors can have x and Ax

parallel, which means that a constant A exists with A x = Ax, or that ( A - X I )x = 0. There

is a close connection between these numbers X and the likelihood that an iterative method

based on A will converge. We will consider the connection in this section.
For a square n x n matrix A, the characteristic polynomial of A is defined by

p( X ) = det(A - X I ).

Because of the way the determinant of a matrix is defined, p is an nth-degree polynomial

and, consequently, has at most n distinct zeros, some of which might be complex. These

zeros of p are called the eigenvalues of the matrix A.
The result on page 256 in Chapter 6, then, implies that the following are equivalent:

• X is an eigenvalue of A ,

• A — X I does not have an inverse,

• there exists a vector x ^ 0 with A x = X x,

• det(A — X I ) = 0.

The prefix eigen comes from the

German adjective meaning “to

own” and is synonymous in

English with the word

characteristic.Each matrix has

its own eigen- or characteristic

equation, with corresponding

eigen- or characteristic values

and functions.

If x is a nonzero vector with A x = AX, then x is called an eigenvector of A corresponding
to the eigenvalue X. Note that if x is an eigenvector of A corresponding to the eigenvalue
X , then any nonzero scalar multiple ax of x is also an eigenvector of A corresponding to X

because

A(ax) = a (Ax) = a (Ax) = A (ax).

If x is an eigenvector associated with the eigenvalue X , then Ax = X x, so the matrix A
takes the vector x into a scalar multiple of itself. When X is a real number and X > 1, A has

the effect of stretching x by a factor of X . When 0 < X < 1, A shrinks x by a factor of X .
When X < 0, the effects arc similar, but the direction is reversed (sec Figure 7.5).

Figure 7.5

(a) A > 1 (b) 1 > A > 0 (c) A < -1 (d ) -1 < A < 0

AM

\
\ x

XA x

AM

Ax

Ax = Ax

Example 1 Determine the eigenvalues and corresponding eigenvectors for the matrix

A

2 0 0
1 1 2
1 -1 4
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7.3 Eigenvalues and Eigenvectors 287

Solution The characteristic polynomial of A is

p(A) = dct(A - A / ) = dct 1 1- A 2
1 -1 4 — A

= - (A.3 -7A2 + 16A - 12) = -(A - 3)(A.- 2)2,

so there are two eigenvalues of A: Ai = 3 and A2 = 2.
An eigenvector Xi ^ 0 corresponding to the eigenvalue Aj = 3 is a solution to the

vector-matrix equation ( A - 3 • 7)xj = 0, so
'

0 -1 0 0
‘

X\ -X \

0 = 1 -2 2 • X 2 = x\ - 2x2 + 2x3

0 1 -1 1 . X3 . x\ - X2 + x3

which implies that x\ = 0 and xi — X3. Any nonzero value of *3 produces an eigenvector for
the eigenvalue Aj = 3. For example, when *3 = 1 we have the eigenvector\\ = (0, 1, 1)'.
Any eigenvector of A corresponding to A = 3 is a nonzero multiple of\\.

An eigenvector X2 ^ 0 of A associated with the eigenvalue A2 = 2 is a solution of the
system ( A — 2/ )x = 0, so

'

0
* '

0 0 0
'

*1
"

0
0 = 1 -1 2 • X 2 = X\ — X2 + 2X3

0 1 -1 2 . X 3 . X\ -X2 + 2X3

In this case the eigenvector has only to satisfy the equation

xx - x2 + 2x3 = 0,

which can be done in various ways. For example, when xj = 0 we have *2 = 2x3, so
one choice would be X2 = (0, 2, 1)'. We could also choose *2 = 0, which requires that

x\ = -2x3. Hence x3 = (-2, 0, 1)' gives a second eigenvector for the eigenvalue A2 = 2,

one that is not a multiple of X2.
The eigenvectors of A corresponding to the eigenvalue A2 = 2generate an entire plane.

This plane is described by all vectors of the form

ax2 + 0x3 = (-20, 2a, a + 0)' ,

for arbitrary constants a and 0, provided that at least one of the constants is nonzero.

The next example illustrates that even some very simple matrices can have no real

eigenvalues.

Example 2 Show that there are no nonzero vectors x in R2 with Bx parallel to x if

B =
0 1

-1 0

Solution The eigenvalues of B are the solutions to the characteristic polynomial

0 = det(fl - A / ) = det
-A 1

-1 -A
A2 + l,

so the eigenvalues of B are the complex numbers Ai
eigenvector x for Aj needs to satisfy

i and A2 = —1. A corresponding

0 -i 1 X\ -ix1 + X2

0 -1 -i x2 X\ - ix2
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288 C H A P T E R 7 Iterative Methods for Solving Linear Systems

that is, 0 = —ix\ +*2 » so *2 = **i » and an eigenvector for A ] = i is (1, i )‘ . In a similar
manner, an eigenvector for A2 = —i is (1, —i)r.

If x is an eigenvector of B, then exactly one of its components is real and the other is

complex. As a consequence, there is no real constant A and nonzero vector x in R2 with

Bx = Ax, and hence there is no nonzero vector x in R2 with Bx parallel to x.

MATLAB provides methods to directly compute the eigenvalues and eigenvectors of
a matrix. We first define the matrix A by

A - [1 0 2; 0 1 -1; -1 1 1]

The characteristic polynomial is determined with

p=poly (A)

giving

p = 1.0000 — 3.0000 6.0000 - 4.0000

The numbers are the coefficients of the characteristic polynomial in descending order, so

p( X ) = X?- 3A.2 + 6A.- 4.

We can now compute the roots of the polynomial to obtain the eigenvalues with

roots (p)

The most direct way to obtain eigenvalues is with the eig command.

eig(A)

If we want the corresponding eigenvectors, we enter eig as

[V, D] = eig(A)

which produces the following matrix V and vector D. We have rounded the entries in V so
that it will display on one line.

V = -0.70710678 -0.70710678 0.70710678
0.35355339 + 0.00000000/ 0.35355339- 0.00000000/ 0.70710678

-0.00000000- 0.61237244/ -0.00000000 + 0.61237244/ 0.00000000

D = 0.999999999999999 + 1.732050807568876/

0.999999999999999- 1.732050807568876/

1.000000000000000

The columns of V are eigenvectors of A corresponding to the eigenvalues in the rows of D.
The notions of eigenvalues and eigenvectors arc introduced here for a specific compu-

tational convenience, but these concepts arise frequently in the study of physical systems. In
fact, they are of sufficient interest that most of Chapter 9 is devoted to their approximation.

Spectral Radius

The spectral radius p ( A ) of a matrix A is defined by

p( A ) = max|A|, where A is an eigenvalue of A.

( Note : For complex A = a + f )i , we have|A|= (or + p2 ) l /2.)
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7.3 Eigenvalues and Eigenvectors 289

Example 3 Determine the spectral radius of the matrices

'

2 0 0
'

0 1

-i °
A = 1

1
1 2

-1 4
and B =

Solution In Example 1 we found that the eigenvalues of A were k\ = 3 and A2 = 2. So

p(A) = max{|3|,|2|) = 3,

and in Example 2 we found that the eigenvalues of B were k\ = i and A2 = —i. So

p( B) = max{\/l2, %/(— l)2} = 1.

The spectral radius is closely related to the norm of a matrix.

/2 Matrix Norm Characterization

If A is an n x n matrix, then

(i) ||A||2 = [p(A'A)]1/*;
(ii) p( A ) < ||A || for any natural norm.

The first part of this result is the computational method for determining the /2 norm of
matrices that we mentioned at the end of the previous section.

Example 4 Determine the /2 norm of

A =
1 1 0
1 2 1

-1 1 2

Solution To apply part (i) of the /2 Matrix Norm Characterization, we need to calculate

p(A'A), so we need the eigenvalues of A'A.

If

‘

1 1 -1
‘

1 1 0
'

3 2 —1

1 2 1 1 2 1 = 2 6 4
0 1 2 -1 1 2 -1 4 5

3 — A 2 -1
0 = det(A'A — kl ) = det 2 6 - k 4

-1 4 5 - k

=- X1+ 14A2 - 42A. = -A(X2 - 14X + 42),

then A. = 0 o r X = 7 ± y/l.So

||i4||2 = s/ p{ A< A ) = ymax{0, 7-Vl , 7 +Vl ) =\jl + -Jl « 3.106.
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290 C H A P T E R 7 Iterative Methods for Solving Linear Systems

The operations in Example 4 can also be performed using MATLAB. First define

A « [1 1 0; 1 2 1; -1 1 2]

then compute its transpose and determine A'A, and the eigenvalues of A' A

u = eig(A’*A)

This gives the eigenvalues as

u = 0.000000000000003

4.354248688935409

9.645751311064592

The square root of the largest eigenvalue is the /2 norm of A

sqrt (u (3) )

which MATLAB gives as 3.105760987433610.
The /2 norm of A can also be directly computed with

nonn (A)

The /00 norm of A is found with norm (A , Inf ).

Convergent Matrices

In studying iterative matrix techniques, it is of particular importance to know when the

powers of a matrix become small (that is, when all of the entries approach zero). We call
an n x n matrix A convergent if, for each i = 1, 2, ... , n and j = 1, 2, ... , n, we have

lim (A% = 0.

Example 5 Show that

A = \ 0

i ij
is a convergent matrix.

Solution Computing the powers of A , we obtain:

1
4
1
4

0
1
4

, A3 =
01

8
3_ 1
16 8

, A4
=

JL 016 U

1
8

1
16

and, in general.

Ak
'

(^ >* 0

S&T (^)*

So A is a convergent matrix because

lim
k-*- OC G)‘ 0 and lim TAT

k —* OC 2*+1 = 0.
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7.3 Eigenvalues and Eigenvectors 291

The following important connection exists between the spectral radius of a matrix and
the convergence of the matrix.

Convergent Matrix Equivalences

The following are equivalent statements:

(i) A is a convergent matrix.

(ii) limn^oc ||A"||= 0, for some natural norm.

(iii) limn_
t 3c ||A'

,
||= 0, for all natural norms.

(iv) p( A ) < 1.

(v) lim^̂ oc A"x = 0, for every x.

E X E R C I S E S E T 7 . 3

l.

2.
3.

4.

5.

6.

7.

Compute the eigenvalues and associated eigenvectors of the following matrices.

a.

c.

e.

8-

2 -1

-1 2

° > 1
1 ° .

2 1 0

1 2 0
0 0 3

‘
2 1 1

"

2 3 2
1 1 2

b. 0 1
1 1

d. 1 1

-2 -2

f.

h.

-1 2 0
'

0 3 4
0 0 7

3 2 -1
'

1 -2 3
2 0 4

Find the spectral radius for each matrix in Exercise 1.

Show that

A , 1 0

I i
•* 2 .

is not convergent, but

is convergent.

Which of the matrices in Exercise 1 are convergent?

Find the ||• ||2 norms of the matrices in Exercise 1.
Show that if X is an eigenvalue of a matrix A and||•|| is a vector norm, then an eigenvector x associated
with X exists with||x|| = 1.
Find 2 x 2 matrices A and B for which p(A + B ) > p(A) + p{ B ). (This shows that p(A ) cannot be

a matrix norm.)
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292 C H A P T E R 7 Iterative Methods for Solving Linear Systems

8. Show that if A is symmetric, then ||A||2 = p(A).
9. Let A be an eigenvalue of the n x n matrix A and x ^ 0 be an associated eigenvector.

a. Show that A. is also an eigenvalue of A'.
b. Show that for any integer k > 1, A* is an eigenvalue of A* with eigenvector x.
c. Show that if A 1 exists, then 1/A is an eigenvalue of A -1 with eigenvector x.

d. Let a ^ A be given.Show that if (A-a / )"1 exists, then l /(A-a) isan eigenvalue of (A-a / )"1

with eigenvector x.
10. In Exercise 8 of Section 6.4, it was assumed that the contribution a female beetle of a certain type

made to the future years’ beetle population could be expressed in terms of the matrix

A =
0 0 6

l 0 0

0 T o

where the entry in the ith row and y'th column represents the probabilistic contribution of a beetle of
age j onto the next year’s female population of age i.
a. Does the matrix A have any real eigenvalues? If so, determine them and any associated eigen-

vectors.

b. If a sample of this species was needed for laboratory test purposes that would have a constant

proportion in each age group from year to year, what criteria could be imposed on the initial

population to ensure that this requirement would be satisfied?

7.4 The Jacobi and Gauss-Seidel Methods

In this section we describe the elementary Jacobi and Gauss-Seidel iterative methods. These
are classic methods that date to the late eighteenth century, but they find current application

in problems where the matrix is large and has mostly zero entries in predictable locations.
Applications of this type are common, for example, in the study of large integrated circuits
and in the numerical solution of boundary-value problems and partial-differential equations.

General Iteration Methods

An iterative technique for solving the n x n linear system Ax = b starts with an initial
approximation x (0) to the solution x and generates a sequence of vectors {x(A)}^1 that

converges to x.These iterative techniques involve a process that converts the system Ax = b
into an equivalent system of the form x = T x + c for some n x n matrix T and vector c.

After the initial vector x(0) is selected, the sequence of approximate solution vectors is

generated by computing

\
{k ) = T %

{k ~l )
A- c

for each k = 1, 2, 3,

The following result provides an important connection between the eigenvalues of the
matrix T and the expectation that the iterative method will converge.

Convergence and the Spectral Radius

The sequence

x(*) = T x( k-\ ) + c

converges to the unique solution of x = Tx + cforanyx10’ inR" ifandonlyifp(T) < 1.

Copyright 2012 Cengagc Learnin*. AI Right* Reversed May rot be copied. wanned.or implicated, in whole or in par. Doc to cjectronie right*.some third pur.y content may be supplied horn the eBook and/or cChaptcnM. Editorial review h*>

deemed Cut any suppressed content dee*not materialy afTcct the overall learnire experience. Cette jpe Learn xie roene* the right M remove additional conceal at any time i!vuhvcyjcm right* restriction* require It.


