Interpolation and Polynomial Approximation

3.1

Weierstrass Approximation Theorem

Introduction

Engineers and scientists commonly assume that relationships between variables in a physical
problem can be approximately reproduced from data given by the problem. The ultimate
goal might be to determine the values at intermediate points, to approximate the integral or
derivative of the underlying function, or to simply give a smooth or continuous representation
of the variables in the problem.

Interpolation refers to determining a function that exactly represents a collection of data.
The most elementary type of interpolation consists of fitting a polynomial to a collection
of data points. Polynomials have derivatives and integrals that are themselves polynomials,
so they are a natural choice for approximating derivatives and integrals. In this chapter
we will see that polynomials to approximate continuous functions are easily constructed.
The following result implies that there are polynomials that are arbitrarily close to any
continuous function.

Suppose that f is defined and continuous on [a, b]. For each ¢ > 0, there exists a
polynomial P (x) defined on [a, b], with the property that (see Figure 3.1)

|f(x) — P(x)| <&, forall x € [a, b].

4 y=f@+e

L2 Y=P®
y=f(x)
e y=f@)—e
-
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64 CHAPTER 3

Karl Weierstrass (EB15-1897) is
often referred to as the father of
modern analysis because of his
insistence on rigor in the
demenstration of mathematical
results. He was instrumental in
developing tests for convergence
of series, and determining ways
to rigorously define irrational
numbers. He was the first to
demenstrate that a function could
be everywhere continuous but
nowhere differentiable, a result
that shocked some of his
contemporaries.

Very little of Weierstrass's
work was published during his
lifetime, but his lectures,
particularly on the theory of
functions, had significant
influence on an entire generation
of students,

Figure 3.2

Interpolation and Polynomial Approximation

The Taylor polynomials were introduced in Chapter 1, where they were described as one
of the fundamental building blocks of numerical analysis. Given this prominence, you might
assume that polynomial interpolation makes heavy use of these functions. However, this is
not the case. The Taylor polynomials agree as closely as possible with a given function ata
specific point, but they concentrate their accuracy only near that point. A good interpolation
polynomial needs to provide a relatively accurate approximation over an entire interval, and
Taylor polynomials do not do that. For example, suppose we calculate the first six Taylor
polynomials about xo = 0 for f(x) = e*. Since the derivatives of f(x) are all e*, which
evaluated at xy = 0 gives 1, the Taylor polynomials are

x? # . i
Pix)=1, Px)=1+=x, Pz(x}=l+x+3-, Ps(x)=1+x+i+'g‘
2 3 4 2 3 4 5
X X X X X X X
P4{I]—-].+I+?+F+£. and Ps(x)-—l+I+E+E+£+ﬁ.

The graphs of these Taylor polynomials are shown in Figure 3.2, Notice that the error
becomes progressively worse as we move away from zero.

¥
201
_ L Jy=P
y=e'f:
F oy = Py(x)
151 ’;
£ y=P®)
10+
£ ¥y = Pyx)
T # - ___,.--—'}'=Pi{x)
- _‘. - - =Py
=] 1 2 3 x

Although better approximations are obtained for this problem if higher-degree Taylor
polynomials are used, this situation is not always true. Consider, as an extreme example,
using Taylor polynomials of various degrees for f(x) = 1/x expanded about xo = 1 to
approximate f(3) = j. Since

f@O=x" f@x)==x72 f'@ = (D227,

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
leemed S any suppressed content does aol mastlaly affoa the overall leaming expericnce. Congage Loaming feserves the right ki emove addltional contemt & any 1ime if subseguent rights resirctions sequire L



3.2 Lagrange Polynomials 65

and, in general,
fO@) = (=1y'nlxt,

the Taylor polynomials forn > 0 are

Ll ffk)(l) 4 n " y
P@=) e =3 (-Dx -1
k=0 = k=0

When we approximate f(3) = } by P,(3) for larger values of n, the approximations become
increasingly inaccurate, as shown Table 3.1.

Table 3.1 n | 0 | 1 |
RG | 1 | -1 |

L2 ]
w
N
wn
-
-3

The Taylor polynomials have the property that all the information used in the approx-
imation is concentrated at the single point xp, so it is not uncommon for these polynomials
to give inaccurate approximations as we move away from xo. This limits Taylor polynomial
approximation to the situation in which approximations are needed only at points close to
xp. For ordinary computational purposes, it is more efficient to use methods that include
information at various points, which we will consider in the remainder of this chapter. The
primary use of Taylor polynomials in numerical analysis is not for approximation purposes;
instead it is for the derivation of numerical techniques.

- 3.2 Lagrange Polynomials
The interpolation formula named  In the previous section we discussed the general unsuitability of Taylor polynomials for
for Joseph Louis Lagrange approximation. These polynomials are useful only over small intervals for functions whose

(1736-1813) was likely known derivatives exist and are easily evaluated. In this section we find approximating polynomials

by Isaac Newton around 1675, that can be determined simply by specifying certain points on the plane through which they
but it appears to have been must pass.

published first in 1779 by Edward
Waring (1736-1798), Lagrange . g
wrote extensively on the subject Lagra“ ge |nterp0|atll"lg Polyﬂum ials

of interpolation and his work had
significant influence on later Determining a polynomial of degree 1 that passes through the distinct points (xo, yy) and

mathematicians, He published (xy, y1) is the same as approximating a function f for which f(xg) = ypand f(x;) = y
this result in 1795. by means of a first-degree polynomial interpolating, or agreeing with, the values of f at the

given points. We first define the functions

Li)= """ and L= 2,
Xg — X1 X1 = Xp
and note that these definitions imply that
Loy =" =1, Lo)=""2=0, Li(x)=0, and Ly(x)=1.
Xp— X Xp— X1
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66 CHAPTER 3 = Interpolation and Polynomial Approximation

We then define

P@) = Lo fGo) + L@ f o) = =" fGo) + L f).
This gives
P() = 1- fGx0) +0- f(x) = f(x0) = yo
and
P(x) =0- f(xo) + 1+ f0x) = f(n) = n.

So, P is the unique linear function passing through (xo, yo) and (xy, y;).

Example 1 Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4)
and (5, 1).

Solution In this case we have

x—35 1 x—2 1
Lo(x) = Y _i(x —5) and Lyi(x) = 5-2° i(x_z)’
50
1 1 4 20 1 2
= —_— —_ -4 - _ v] = — — - —— = — H
P(x) 3(x 5) +3(x 2)-1 3x+ 3 + 3x 3 x + 6
The graph of y = P(x) is shown in Figure 3.3. u

Figure 3.3

To generalize the concept of linear interpolation to higher-degree polynomials,
consider the construction of a polynomial of degree at most n, shown in Figure 3.4,
that passes through the n + 1 points

(xo, f(x0)), (x1, F(x1)), ..., (xn, £(xR)).

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
deemed S Ry supprEssed content dees ool maxtlaly affoa the overll leaming expericnce. Cengage Loaming reserves the ripht i remove additinnal contee & any 1time f subrseguent rights restrictons rogquire [k



Figure 3.4

Figure 35

3.2 Lagrange Polynomials 67

Y

In this case, we construct, for each ¥ = 0,1,...,n, a polynomial of degree n,
which we will denote by L, ;(x), with the property that L, ;(x;) = 0 when i # k and
Ln.k(ka =1

To satisfy L, i(x;) = 0 for each i # k, the numerator of L, ;(x) must contain the
term

(x — x) (x — x1) -+ (x = X1 ) (% — Xp1) -+ (x — ).

To satisfy L, ;(xi) = 1, the denominator of L, ¢ (x) must be this term evaluated at x = x;.
Thus

(x —xp) -+ (X — Xp— 1 )X — Xp1) - -+ (x — X,)
(xx — x0) -~ (X — Xp—1) (X — Xest) == (X — X))

Lyix) =

A sketch of the graph of a typical L, , when n is even is shown in Figure 3.5.

L,4(x) 4

= —
=1 X *u

Xigy e 5 X x

/"'\u/'\___./:_\ bl WP
/gn X e X

The interpolating polynomial is easily described now that the form of L, i (x) is known.
This polynomial is called the nth Lagrange interpolating polynomial.
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68 CHAPTER 3 = Interpolation and Polynomial Approximation

nth Lagrange Interpolating Polynomial

Py(x) = f(x)Luo(®) + -+ - + f(x) Ly n(x) = Zf(xz)L“(x).

where

(x —xo)(x —x1) - (x — X1 )(x — Xpp1) -+ - (x — x)
(g — x0) (xx — x1) » - - (X — xp—1) (g — Xgp1) - = (36 — Xn)
foreachk =0,1,...,n

Lyy(x) =

If xg, x1,...,x, are (n + 1) distinct numbers and f is a function whose values are
given at these numbers, then P,(x) is the unique polynomial of degree at most n that
agrees with f(x) at xg, xy, ..., x,. The notation for describing the Lagrange interpolating
polynomial P,(x) is rather complicated because P, (x) is the sum of the n + 1 polynomials
[l Ly i(x), for k = 0,1,... ,n, each of which is of degree n, provided f(x;) # 0.
To reduce the notational complication, we will write L, (x) simply as L;(x) when there
should be no confusion that its degree is n.

Example 2 (a) Use the numbers (called nodes) xp = 2, x; = 2.75, and x; = 4 to find the second
Lagrange interpolating polynomial for f(x) = 1/x.

(b) Use this polynomial to approximate f(3) = 1/3.
Solution (a) We first determine the coefficient polynomials Lo(x), L(x), and L,(x). They

are
Lo(x) = g z ;:;g _:)) 2(,: —2.75)(x — 4),
Lix) = % = o~ 26 -4,
and
Ly(x) = E: = i;% %[ —~ 2)(x —2.75).

Also, f(xo) = f(2) = 1/2, f(x1) = f(2.75) = 4/11, and f(x;) = f(4) = 1/4,5s0

2
P) =) f)Li()

k=0

;(x 2.75)(x —4) — ———{x —2)x—4) + ll—o(x — 2)(x —2.75)
_la 3B 4
T 88 44"

(b) An approximation to f(3) = 1/3 (see Figure 3.6) is
9 105 49 29

f@)=P@3)= 3 ﬁ+4—4 = ﬁﬁ032955
Recall that in the Section 3.1 (see Table 3.1) we found that no Taylor polynomial expanded
about xp = 1 could be used to reasonably approximate f(x) = 1/xatx = 3. m
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3.2 lLagrange Polynomials 69

Figure 3.6

The Lagrange polynomials have remainder terms that are reminiscent of those for
the Taylor polynomials. The nth Taylor polynomial about x; concentrates all the known
information at x; and has an error term of the form

FDER)

(n + 1)! G —x0)",

where £(x) is between x and xy. The nth Lagrange polynomial uses information at the
distinct numbers xg, xy, ..., x,. In place of (x — xp)"*!, its error formula uses a product of
the n + 1 terms (x — xp), {x —x;), ..., (x —x,), and the number £(x) can lie anywhere in
the interval that contains the points xg, xy, ..., X,, and x. Otherwise it has the same form
as the error formula for the Taylor polynomials.

Lagrange Polynomial Error Formula

(n+1)
fx) = P,(x) + ﬁ@: —x0)(x —x1)- - (x — xa),
for some (unknown) number £(x) that lies in the smallest interval that contains

X, X],... X, and x.

This error formula is an important theoretical result, because Lagrange polynomials
are used extensively for deriving numerical differentiation and integration methods. Error
bounds for these techniques are obtained from the Lagrange polynomial error formula. The
specific use of this error formula, however, is restricted to those functions whose derivatives
have known bounds. The next Illustration shows interpolation techniques for a situation in
which the Lagrange error formula cannot be used. This shows that we should look for a
more efficient way to obtain approximations via interpolation.

Illustration  Table 3.2 lists values of a function f at various points. The approximations to f(1.5)
obtained by various Lagrange polynomials that use this data will be compared to try to
determine the accuracy of the approximation.

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
leemed S any suppressed content does aol mastlaly affoa the overall leaming expericnce. Congage Loaming feserves the right ki emove addltional contemt & any 1ime if subseguent rights resirctions sequire L



70 CHAPTER 3 = Interpolation and Polynomial Approximation

Table 3.2 The most appropriate linear polynomial uses xo = 1.3 and x; = 1.6 because 1.5 is
ﬁ between 1.3 and 1.6. The value of the interpolating polynomial at 1.5 is

e P (1.5 - 1.6) (1.5 - 1.3)

1.0 0.7651977 Pi(15)=—fF(1.3)+— - f(1.6)

13 06200880 L e =

1.6 0.4554022 15—16 15— 13

12 OaaLE1on S =18 4 6200860) + 1 =13 (0 4554022) = 0.5102968.

22 0.1103623 ~ 1.3 —19) (1.6—1.3)

Two polynomials of degree 2 can reasonably be used, one with xo = 1.3, x; = 1.6, and
x2 = 1.9, which gives
(1.5-1.6)(1.5—-1.9) (1.5-13)1.5-1.9

P13) = (131613 = 1.9) 00200800 + (1 o1 3) (1.6 — 1.9) (4224022

(1.5 — 1.3)(1.5 — 1.6)
(19— 1.3)(1.9 — 1.6)

and one with xp = 1.0, x; = 1.3, and x; = 1.6, which gives BP,(1.5) = 0.5124715.

In the third-degree case, there are also two reasonable choices for the polynomial. One
with xp = 1.3, x; = 1.6, x; = 1.9, and x3 = 2.2, which gives P;(1.5) = 0.5118302. The
second third-degree apProximation is obtained with x; = 1.0, x; = 1.3, x, = 1.6, and
x3 = 1.9, which gives P3(1.5) = 0.5118127.

The fourth-degree Lagrange polynomial uses all the entries in the table. With xy = 1.0,
x1=13,x =16,x;3 =19, and x, = 2.2, the approximation is P;(1.5) = 0.5118200.

Because P3(1.5), P3(1.5), and P4(1.5) all agree to within 2 x 10~ units, we expect
this degree of accuracy for these approximations. We also expect P4(1.5) to be the most
accurate approximation because it uses more of the given data.

The function we are approximating is actually the Bessel function of the first kind of
order zero, whose value at 1.5 is known to be 0.5118277. Therefore, the true accuracies of
the approximations are as follows:

[Py (1.5) — £(1.5)] ~ 1.53 x 1073,

(0.2818186) = 0.5112857,

[P5(1.5) — £(1.5)| = 5.42 x 107*,
|By(1.5) — f(1.5)| ~ 6.44 x 107,
[P5(1.5) — F(1.5)] = 2.5 x 1075,
[B3(1.5) — f(1.5)] ~ 1.50 x 1073,
|Ps(1.5) — £(1.5)] ~ 7.7 x 1075,

Although P;(1.5) is the most accurate approximation, if we had no knowledge of
the actual value of f(1.5), we would accept P;(1.5) as the best approximation because it
includes the most data about the function. The Lagrange error term cannot be applied here
because we have no knowledge of the fourth derivative of f. Unfortunately, this is generally
the case. ]

Neville’s Method

A practical difficulty with Lagrange interpolation is that because the error term is difficult
to apply, the degree of the polynomial needed for the desired accuracy is generally not
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3.2 lLagrange Polynomials n

known until the computations are determined. The usual practice is to compute the results
given from various polynomials until appropriate agreement is obtained, as was done in the
previous example. However, the work done in calculating the approximation by the second
polynomial does not lessen the work needed to calculate the third approximation; nor is the
fourth approximation easier to obtain once the third approximation is known, and so on. To
derive these approximating polynomials in a manner that uses the previous calculations to
advantage, we need to introduce some new notation.

Let f be a function defined at xp, xy, X2, ..., x, and suppose that m,, my, ..., m,; are
k distinct integers with 0 < m; < n for each i. The Lagrange polynomial that agrees with
S (x) at the k points X, , Xy, - oo, Xy 18 denoted B s, m, ().

Example 3 Supposethat xo = 1, x; = 2, x2 = 3, x3 = 4, x4 = 6, and f(x) = ¢*. Determine the
interpolating polynomial denoted P ; 4(x), and use this polynomial to approximate f(5).

Selution This is the Lagrange polynomial that agrees with f(x) at x; = 2, x; = 3, and
x5 = 6. Hence

(x—-3) "'6)8;; (x—2)(x— 6)e3 (x—2)(x—3) ¢
(2-3)2-06) 3-2)3-06) 6—-2)6-3) '

Pyaalx) =

So

-3G-6, (-2(6-6), (-26-3
2-3)2-6 " (3-23-6 ' (6-2(6-3)

f(8) = Pyp4(5) =
=— 132+e3+1e6~"'-213.105‘ L
2 2

The next result describes a method for recursively generating Lagrange polynomial
approximations.

Recursively Generated Lagrange Polynomials
Let f be defined at xg, xy, ..., x; and x;, x; be two numbers in this set. If

PG) = (x—x)Po1,..i-1j+1..x0) — (x '“xi)PO.l..,..!—t.1+].....k(x)’
(xi —x;)
then P(x) is the kth Lagrange polynomial that interpolates, or agrees with, f(x) at the
k + 1 points xg, xj, ..., Xg.
To see why this recursive formula is true, first let Q@ = Py ;_1is1,..; and @ =

Pyi,..j-1.j+1,..k Since Q(x) and O(x) are polynomials of degree at most k — 1,
(x —x) Q@) — (x — x)Q(x)

P(x) = (xl— _xj)

must be of degree at most k. If 0 < r < kwithr # i and r # j, then Q(x,) = Q(x,) =
fx.).s0

x, —x)00) — (6 —x)0(x,) _xi—x))

Xi—Xj T i—xp)

P =" £ = Fx).
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12 CHAPTER 3 = Interpolation and Polynomial Approximation

Moreover,

B - SO — G H)OE)| 2 f) = f),
J

X —2x (x;

and similarly, P(x;) = f(x;). But there is only one polynomial of degree at most & that
agrees with f(x) at xq, xy, ..., x;, and this polynomial by definition is Py, «(x). Hence,

—X)Po, =14,k ) — (X — X)) Pt i=1isl,. k(X)
xi —xj) '
This result implies that the approximations from the interpolating polynomials can
be generated recursively in the manner shown in Table 3.3. The row-by-row generation is
performed to move across the rows as rapidly as possible, because these entries are given
by successively higher-degree interpolating polynomials. This procedure is called Neville’s

Pl],l,,,,,k(x) = P(I) = {x

method.
Table 3.3 6 P
Xy Py Py
X2 Py P2 Poz
X3 Py P;a Pigs Pyrzs
X Py Pys Py Piaay Poisae

The P notation used in Table 3.3 is cumbersome because of the number of subscripts
used to represent the entries. Note, however, that as an array is being constructed, only two
subscripts are needed. Proceeding down the table corresponds to using consecutive points
Eric Harold Neville (1889-1961)  y, with larger i, and proceeding to the right corresponds to increasing the degree of the
gave this modification of the interpolating polynomial. Since the points appear consecutively in each entry, we need to
Lagrange formula in 2 paper describe only a starting point and the number of additional points used in constructing the
pebliteclin 19BR 00 approximation. To avoid the cumbersome subscripts we let Q; ;(x), for 0 < j < i, denote
the jth interpolating polynomial on the j + 1 numbers x; _;, Xi_j+1, ..., Xi—1, X;; that is,

Qi) = Picjimjtl i1
Using this notation for Neville's method provides the O notation in Table 3.4.

Table34 Py= Qoo
Xi A= Ql.tl Pﬂ.l = Qi,r
x2 Py= Qa0 Pia=02 Praz= Q22
X3 Pi= 0y Pia= Q1 Pias=(0h; Poraa= (s
Xy Pe= Qup Psa = Qan Prag= Qa2 Pizsa= Qa3 Porzss = Qas

Example 4 Table 3.5 lists the values of f(x) = Inx accurate to the places given. Use Neville’s method
and four-digit rounding arithmetic to approximate f(2.1) = In2.1 by completing the
Table 35 Neville table.

i B Inx;
0 2.0 0.6931 Solution Because x — xg = 0.1, x —x; = —0.1, x — x = —0.2, and we are given
1 22 0.7885 Qo0 =0.6931, 01,0 = 0.7885, and 07 = 0.8329, we have
2 23 0.8329
1 0.1482
Qi = 02 [(0.1)0.7885 — (—0.1)0.6931] = 02 = 0.7410
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3.2 Lagrange Polynomials 13

and

0.07441 — 0.7441.

Q1= {% [(—0.1)0.8329 — (—0.2)0.7885] =

The final approximation we can obtain from this data is

1 0.2276
02>= — [(0.1)0.7441 — (—0.2)0.7410] = - = 0.7420.
' 0.3 0.3
These values are shown in Table 3.6. ]
Table36 ; x x—x Qi O Oz
0 20 0.1 0.6931
1 22 —0.1 0.7885 0.7410
2 23 0.2 0.8329 0.7441 0.7420

If the latest approximation, Q5 3, is not as accurate as desired, another node, x3, can be
selected and another row can be added to the table:

x3 Qs Q3,1 Q32 Qs

Then @33, @1,7, and Q4 3 can be compared to determine further accuracy.
Using x3 = 2.4 in Example 4 gives no improvement of accuracy because the additional
TOW is

24 0.8755 0.7480 0.7420 0.7420.

Had the data been given with more digits of accuracy, there might have been animprovement.

EXERCISE SET 32

1. For the given functions f (x), letxy = 0,x, = 0.6,and x, = 0.9. Construct the Lagrange interpolating
polynomials of degree (i) at most 1 and (ii) at most 2 to approximate f(0.45), and find the actual

EITor.
a f(x)=cosx b. f(x)= JT+x
¢ fx)=hix+1) d. f(x)=tanx

2.  Usethe Lagrange polynomial error formula to find an error bound for the approximations in Exercise 1.
3.  Use appropriate Lagrange interpolating polynomials of degrees 1, 2, and 3 to approximate each of
the following:
a.  f(B4) if f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 18.82091
T 2 (—; if f(—0.75) = —0.07181250, f(—0.5) = —0.02475000, f(—0.25) = 0.33493750,
Ff(0) = 1.10100000
¢ f(0.25) if f(0.1) = 0.62049958, f(0.2) = —0.28398668, f(0.3) = 0.00660095, f(0.4) =
0.24842440
d.  f(0.9) if f(0.6) = —0.17694460, f(0.7) = 0.01375227, f(0.8) = 0.22363362, f(1.0) =
0.65809197
4.  Use Neville's method to obtain the approximations for Exercise 3.
5. Use Neville's method to approximate /3 with the function f(x) = 3" and the values xy = -2,
xi=—l,x2=0,x3=1,andxy =2.
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rL CHAPTER 3 = Interpolation and Polynomial Approximation

6. Use Neville's method to approximate ~/3 with the function f(x) = /x and the values xo = 0,x; = 1,
X3 = 2, x3 = 4, and x; = 5. Compare the accuracy with that of Exercise 5.

7.  The data for Exercise 3 were generated using the following functions. Use the error formula to find a
bound for the error and compare the bound to the actual error for the cases n = 1 and n = 2.
a fl(x)=xlnx
b.  f(x) =2 +4.001x% +4.002x + 1.101
e f(x)==xcosx—2x"+3x-1
d. f(x)=sin(e* —2)

8. Use the Lagrange interpolating polynomial of degree 3 or less and four-digit chopping arithmetic to
approximate cos 0,750 using the following values. Find an error bound for the approximation.

cos0.698 = 0.7661 ¢0s0.733 = 0.7432
cos0.768 = 0.7193  ¢0s0.803 = 0.6946

The actual value of cos 0.750 is 0.7317 (1o four decimal places). Explain the discrepancy between the
actual error and the error bound.

9.  Use the following values and four-digit rounding arithmetic to construct a third Lagrange polyno-
mial approximation to f(1.09). The function being approximated is f(x) = log,,(tan x). Use this
knowledge to find a bound for the error in the approximation.

f(1.00) =0.1924 f(1.05) = 0.2414 f(1.10) =0.2933 f(1.15) =0.3492

10. Repeat Exercise 9 using MATLAB in long format mode.

11. Let Py(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). Find y if the
coefficient of x3 in Py(x) is 6.

12, Neville’s method is used to approximate f(0.5), giving the following table.

Xp = 0 P“ =0
X = 0.4 P; =28 .PD_1 =39
=07 P Py, Py =

-

Determine P; = f(0.7).

13. Suppose you need to construct eight-decimal-place tables for the common, or base-10, logarithm
function from x = 1 to x = 10 in such a way that linear interpolation is accurate to within 10-¢.
Determine a bound for the step size for this table. What choice of step size would you make to ensure
that x = 10 is included in the table?

14, Suppose x; = j for j =0, 1, 2, 3 and it is known that
Poix)=2x+1, Poa(x)=x+1, and Py33(2.5)=3.

Find P[m . 21(25] .

15, Neville’s method is used to approximate f(0) using f(—2), f(—1), f(1), and f(2). Suppose f(—1)
was overstated by 2 and f(1) was understated by 3. Determine the error in the original calculation of
the value of the interpolating polynomial to approximate f(0).

16. The following table lists the population of the United States from 1960 to 2010.

Year | 1960 | 1970 | 1980 | 1990 | 2000 | 2010
Population (thousands) | 179,323 | 203,302 | 226,542 | 249,633 | 281,442 | 307,746

a. Find the Lagrange polynomial of degree 5 fitting this data, and use this polynomial to estimate
the population in the years 1950, 1975, and 2020.

b.  The population in 1950 was approximately 151,326,000. How accurate do you think your 1975
and 2020 figures are?
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17.

33 Divided Differences 15

In Exercise 15 of Section 1.2, a Maclaurin series was integrated to approximate erf(1), where erf(x)
is the normal distribution error function defined by

2 L aa
erf(x) = —— f e dt.
Ve
a. Use the Maclaurin series to construct a table for erf(x) that is accurate to within 10~ for erf(x;),

where x; = 0.2, fori =0,1,...,5.
b.  Use both linear interpolation and quadratic interpolation 1o obtain an approximation to erf(}).
Which approach seems more feasible?

e 33

As in so many areas, [saac
Newton is prominent in the study
of difference equations. He
developed interpolation formulas
as early as 1675, using his A
notation in tables of differences.
He took a very general approach
to the difference formulas, so
explicit examples that he
produced, including Lagrange's
formulas, are often known by
other names.

Divided Differences

Iterated interpolation was used in the previous section to generate successively higher degree
polynomial approximations at a specific point. Divided-difference methods introduced in
this section are used to successively generate the polynomials themselves.

Divided Differences

We first need to introduce the divided-difference notation, which should remind you of the
Aitken’s A® notation defined on page 53. Suppose we are given the n + 1 points (xo, f(x0)),
(x1, f(x1))s ... (x4, f(x,)). There are n + 1 zeroth divided differences of the function f.
Foreachi =0,1,... ,n we define f[x;]simply as the value of f at x;:

flxd = fx).

The remaining divided differences are defined inductively. There are n first divided differ-
ences of f,oneforeachi =0, 1,... ,n — 1. The first divided difference relative to x; and
x;. is denoted f[x;, x; 1] and is defined by

flrin] = flu]

Slxiyxi] =
Xig1 —X;
After the (k — 1)st divided differences,
Flxe, gy, Xy ooy Xiamy] and  flxegn, Xiao, . oo, Xidk—1, Xiak ],

have been determined, the kth divided difference relative to x;, x;41, Xj42, ..., Xigg 18
defined by
T, Xigas ooy Xigrd — £ Xigry - ooy Xig]

FIX Xigds o oo s Xighots Xigp) = !
Xisk — X

The process ends with the single nth divided difference,

PR TSN | TS |
Xnp — Xp

With this notation, it can be shown that the nth Lagrange interpolation polynomial for f
with respect to xp, X1, ... , X, can be expressed as

Py(x) = flxol + flxo, x110x — x0) + flxo, %1, %2](x — xp)(x — Xx1) +- -~
+ fx0, X1, ooy X0 (x — X0) (X — 1) - (x — Xpy)

which is called Newton's divided-difference formula. In compressed form we have the
following.
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