
C H A P T E R

3 Interpolation and Polynomial Approximation

3.1 Introduction

Engineers and scientists commonly assume that relationships between variables in a physical
problem can be approximately reproduced from data given by the problem. The ultimate
goal might be to determine the values at intermediate points, to approximate the integral or
derivativeof the underlying function,or to simply give a smooth or continuous representation

of the variables in the problem.
Interpolation refers to determining a function that exactly represents a collection of data.

The most elementary type of interpolation consists of fitting a polynomial to a collection

of data points. Polynomials have derivatives and integrals that are themselves polynomials,

so they are a natural choice for approximating derivatives and integrals. In this chapter

we will see that polynomials to approximate continuous functions are easily constructed.
The following result implies that there are polynomials that are arbitrarily close to any
continuous function.

Weierstrass Approximation Theorem

Suppose that / is defined and continuous on [a , b ]. For each e > 0, there exists a
polynomial P ( x ) defined on [a , b\, with the property that (see Figure 3.1)

1/00- P( x )\ < e, for all * [a , b\.

Figure 3.1

y

/

/
/

/zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t

*/
/

y =m+ e

'' y = P(x )

y =/(*)

* y = f(x) - e

a
-f-
b X

63

Copyright 2012 Cenjjayc Lcirrii/ AI Rphu Reserved May nca be copied Manned or duplicated to whole or to pan. Doc to electronic rights. tone third pary conicac nu> be supprcsxd tan the eBook and/or eChacxcnul . Editorial review has
deemed that any vupprc'-cd content decs not aiaxtlaXy afTect the overall learning experience ('engage Leaning rociscv the right n rerrx'cc additional contort at any time iJ subsequent nglrs restrictions require it.



64 CHAPTER 3 Interpolation and Polynomial Approximation

Karl Weierstrass (1815-1897) is

often referred to as the father of

modem analysis because of his

insistence on rigor in the

demonstration of mathematical

results. He was instrumental in

developing tests for convergence

of scries, and determining ways

to rigorously define irrational

numbers. He was the first to

demonstrate that a function could

be everywhere continuous but

nowhere differentiable, a result

that shocked some of his

contemporaries.
Very little of Wcierstrass’s

work was published during his

lifetime, but his lectures,

particularly on the theory of

functions, had significant

influence on an entire generation

of students.

The Taylor polynomials were introduced in Chapter 1, where they were described asone
of the fundamental building blocks of numerical analysis.Given this prominence, you might

assume that polynomial interpolation makes heavy use of these functions. However, this is

not the case. The Taylor polynomials agree as closely as possible with a given function at a
specific point, but they concentrate their accuracy only near that point A good interpolation

polynomial needs to provide a relatively accurate approximation over an entire interval, and

Taylor polynomials do not do that. For example, suppose we calculate the first six Taylor
polynomials about *o = 0 for f ( x) = e x . Since the derivatives of f ( x) are all e x , which
evaluated at x0 = 0 gives 1, the Taylor polynomials are

x2
X

2
*

3

ftW = l. P\ ( x ) = l + X t Pl ( x ) = l +* + y, P)( x ) = l + X + y + —,

X
2

X
3

i>
4(x) = l + x + y +-+ ^, a n d P5 ( X ) = l + x + y + ^ + ^ + ^
The graphs of these Taylor polynomials arc shown in Figure 3.2. Notice that the error

becomes progressively worse as we move away from zero.

Figure 3.2
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Although better approximations are obtained for this problem if higher-degree Taylor
polynomials are used, this situation is not always true. Consider, as an extreme example,

using Taylor polynomials of various degrees for f ( x ) = l / x expanded about X Q = 1 to

approximate /(3) = Since

/(x) = x
_

1, /'(x) =-x-2, /"(x) = (—1)22 • x-3.
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3.2 Lagrange Polynomials 65

and, in general,

/ <"> (*) = (-1)"«!*—',

the Taylor polynomials for n > 0 are

AW =£ - D* =£(-l)‘(*- 1)*.

When we approximate /(3) = ^ by P„ (3) for larger values of n , the approximations become

increasingly inaccurate, as shown Table 3.1.

Table 3.1 n 0 1 2 3 4 5 6 7

PnO ) 1 -1 3 -5 11 -21 43 -85

The Taylor polynomials have the property that all the information used in the approx-
imation is concentrated at the single point XQ , so it is not uncommon for these polynomials

to give inaccurate approximations as we move away from xo - This limits Taylor polynomial

approximation to the situation in which approximations are needed only at points close to

XQ. For ordinary computational purposes, it is more efficient to use methods that include

information at various points, which we will consider in the remainder of this chapter. The
primary use of Taylor polynomials in numerical analysis is not for approximation purposes;

instead it is for the derivation of numerical techniques.

3.2 Lagrange Polynomials

The interpolation formula named

for Joseph Louis Lagrange

(1736-1813) was likely known

by Isaac Newton around 1675,

but it appears to have been

published first in 1779 by Edward

Waring (1736-1798). Lagrange

wrote extensively on the subject

of interpolation and his work had

significant influence on later

mathematicians. He published

this result in 1795.

In the previous section we discussed the general unsuitability of Taylor polynomials for

approximation.These polynomials are useful only over small intervals for functions whose

derivatives exist and are easily evaluated. In this section we find approximating polynomials
that can be determined simply by specifying certain points on the plane through which they

must pass.

Lagrange Interpolating Polynomials

Determining a polynomial of degree 1 that passes through the distinct points (x0, yo) and

(xi , yi ) is the same as approximating a function / for which f ( xo ) = yo and f ( x\ ) = yi

by means of a first-degree polynomial interpolating, or agreeing with, the values of / at the
given points. We first define the functions

L0(x ) = ——— and L\ ( x ) = ——— ,
*0-*1 x\- XQ

and note that these definitions imply that

£o(*o) = ——— = 1, £o(*i ) = ——— = 0, L\ (xo) = 0, and L\(xi ) = 1.
*0 — *1 Xo - X\
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66 C H A P T E R 3 Interpolation and Polynomial Approximation

We then define

P ( x ) = L0(x ) f ( x0 ) + L , (JT)/(XI ) = - f ( x0) + -—— f (x i ).
Xo X\ XQ

This gives

P ( xo) = 1 • f i x0) + 0 • f i x i ) = f i x0) = y0

and

PM = 0 • f i xo) + 1 • /(*,) = /(*,) = y, .

So, P is the unique linear function passing through (*o , yo) and (ATJ , y\ ).

Example 1 Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4)

and (5, 1).

Solution In this case we have

£o(*) = = -I(*- 5) and £|(x) = j—|= - 2),

SO

1 1 4 20 1 2
P (x ) = — - (x - 5) • 4 + ~ i x — 2) • 1 = — -x + — + -x — - = —x + 6.

The graph of y = Pix ) is shown in Figure 3.3.

Figure 3.3
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To generalize the concept of linear interpolation to higher-degree polynomials,

consider the construction of a polynomial of degree at most n , shown in Figure 3.4,

that passes through the n + 1 points

C*0, fixo)) , (*1, /(*i ))f . . . . ixn , f i xn ) ).
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3.2 Lagrange Polynomials 67

Figure 3.4

Figure 3.5
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In this case, we construct, for each k = 0, a polynomial of degree ny

which we will denote by L„,*(x), with the property that £„.* (*« ) = 0 when i ^ k and

IMW = 1-
To satisfy Ln k { Xi ) = 0 for each i # ky the numerator of Ln >*(x) must contain the

term

( x - X0)(x-XJ) " " " (x-X*
_

I )(X - X*+i) • • • (x - Xn).

To satisfy L„,*(x*) = 1 , the denominator of Ln< k ( x ) must be this term evaluated at A: = xk.
Thus

L k M =
( X - X Q ) - - - ( X - xk-\ )( x - Xk+i ) • » • (x -x„)

"

(x*-Xo) • • • ( xk - xk-i )( xk -x*+1) • • • (x* - xn )
*

A sketch of the graph of a typical Ln%k when n is even is shown in Figure 3.5.
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The interpolating polynomial is easily described now that the form of Ln %k ( x ) is known.
This polynomial is called the nth Lagrange interpolating polynomial.
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68 C H A P T E R 3 Interpolation and Polynomial Approximation

nth Lagrange Interpolating Polynomial

Pn (x ) = f ( Xo )L„
'
0(x ) + • • • + f ( Xn )Lntn{x ) = f ( xk )L„,*(*),

*=0

where

Ln.kW =
( x - x0 )( x - X\ ) - - - ( x - x*- i )(x - xk+i ) •

(** -*o)U*-Xi) • • • (x*-x*
_

i)(x* - x*+ i )

( x - xn)_
• (**- xn )

for each & = 0, 1,.. . , n.

I f xo , x \ , ... , xn are ( n + 1) distinct numbers and / is a function whose values are
given at these numbers, then Pn ( x ) is the unique polynomial of degree at most n that

agrees with / (x ) at x<>, x i, ... , xn.The notation for describing the Lagrange interpolating
polynomial Pn(x ) is rather complicated because Pn { x ) is the sum of the n + 1 polynomials

f ( xk )Ln % k ( x), for k = 0, 1, ... , n, each of which is of degree ny provided f ( xk ) # 0.
To reduce the notational complication, we will write Lnk ( x ) simply as L*(x) when there

should be no confusion that its degree is n.

Example 2 (a) Use the numbers (called nodes) xo = 2, x\ = 2.75, and x2 = 4 to find the second
Lagrange interpolating polynomial for / (x) = 1/ jt.

(b) Use this polynomial to approximate / (3) = 1/3.

Solution (a) We first determine the coefficient polynomials Lo(x), L\(x), and L2(x).They

are

Lo(x ) =

Ldx ) =

(x - 2.75)(x - 4)

(2 — 2/75)(2 — 4)
“

(x - 2)(x - 4)

(2.75 — 2) (2.75 — 4)

|(oc - 2.75)(*-4),

= -~ (^ - 2)(^ -4),

an d

L2 { X )
( x - 2 )( x - 2.75)

(4- 2)(4- 2.75) I-2)(x - 2.75).

Also, f {xo) = / (2) = 1/2, /(x,) = /(2.75) = 4/11, and / (x2) = / (4) = 1/4, so

2

^(*) =£ /(**)£*(*)

*=0

=\( X - 2.75)(x - 4) -^(x - 2)(x - 4) + ^(x - 2)(x - 2.75)

1 , 35 49
= — x ~ x 4- —.

22 88 44

(b) An approximation to /(3) = 1/3 (see Figure 3.6) is

/(3) % P {3) = — + — = — % 0.32955.JK )
22 88 44 88

Recall that in the Section 3.1 (see Table 3.1) we found that no Taylor polynomial expanded

about xo = 1 could be used to reasonably approximate f ( x ) = 1/x at x = 3.
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3.2 Lagrange Polynomials 69

Figure 3.6
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The Lagrange polynomials have remainder terms that are reminiscent of those for
the Taylor polynomials. The nth Taylor polynomial about XQ concentrates all the known
information at XQ and has an error term of the form

(n + 1)!
- x0 )n+\

where §(JC) is between x and JCO. The nth Lagrange polynomial uses information at the

distinct numbers JCO, x\ x„. In place of (JC - JCO)"+ i , its error formula uses a product of

the n + 1 terms (JC JCO), (x — JCJ ), ... , (JC JC ), and the number £(JC) can lie anywhere in
the interval that contains the points JCO, X\ , .. . , JC , and JC. Otherwise it has the same form

as the error formula for the Taylor polynomials.

Lagrange Polynomial Error Formula

(JC) )
f ( x ) = Pn ( x ) +

3 3
CX - x0 )(x - X\ ) • • • (x - JC„ ),

(n + 1)!

for some (unknown) number f (x) that lies in the smallest interval that contains

JCO, JCJ , . .., jcn andjc.

This error formula is an important theoretical result, because Lagrange polynomials

are used extensively for deriving numerical differentiation and integration methods. Enror
bounds for these techniques are obtained from the Lagrange polynomial error formula. The

specific use of this error formula, however, is restricted to those functions whose derivatives

have known bounds. The next Illustration shows interpolation techniques for a situation in
which the Lagrange error formula cannot be used. This shows that we should look for a
more efficient way to obtain approximations via interpolation.

Illustration Table 3.2 lists values of a function / at various points. The approximations to /(1.5)

obtained by various Lagrange polynomials that use this data will be compared to try to

determine the accuracy of the approximation.
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70 C H A P T E R 3 Interpolation and Polynomial Approximation

Table 3.2

x /(*)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

The most appropriate linear polynomial uses XQ = 1.3 and x\ = 1.6 because 1.5 is
between 1.3 and 1.6. The value of the interpolating polynomial at 1.5 is

7>
i (1.5) =

(1.5 - 1.6)

(1.3 - 1.6) /
(1.3) +

(1.5 - 1.3)

(1.6 - 1.3) /
(1.6)

(1.5 - 1.6)

( 1 -3 - 1.6)
(0.6200860) +

(1 6- 1 3)
(04554022) = 05102968'

Two polynomials of degree 2 can reasonably be used, one with x0 = 1.3, x\ = 1.6, and
X2 = 1.9, which gives

/>
2(1.5) =

(1.5 — 1.6)(1.5 —
(1.3- 1.6)(1.3-

1.9)

1.9)
(0.6200860) +

(1.5 — 1.3)(1.5 — 1.9)

(1.6 — 1.3)(1.6 — 1.9)
(0.4554022)

+
(1.5 — 1.3)(1.5 — 1.6)

( L9 — 1.3)(1.9 — 1.6)
(0.2818186) = 0.5112857,

and one with xo = 1.0, x\ = 1.3, and *2 = 1.6, which gives /*2(1-5) = 0.5124715.

In the third-degree case, there are also two reasonable choices for the polynomial. One
with *0 = 1.3, x\ = 1.6, X 2 = 1.9, and x$ = 2.2, which gives />

3(1.5) = 0.5118302. The
second third-degree approximation is obtained with *0 = 1.0, X\ = 1.3, *2 = 1.6, and

*3 = 1.9, which gives />
3(1.5) = 0.5118127 .

The fourth-degree Lagrange polynomial uses all the entries in the table. With xo = 1.0,

x\ = 1.3, X2 = 1.6, *3 = 1.9, and x4 = 2.2, the approximation is /*4(1.5) = 0.5118200.

Because />
3(1.5), /*3(1.5), and /*4(1.5) all agree to within 2 x 10-5 units, we expect

this degree of accuracy for these approximations. We also expect /*4 (1.5) to be the most

accurate approximation because it uses more of the given data.

The function we are approximating is actually the Bessel function of the first kind of
order zero, whose value at 1.5 is known to be 0.5118277. Therefore, the true accuracies of

the approximations are as follows:

|/*i (1.5) — /(1.5)|» 1.53 x ltT3
,

I /*2(1 -5) — /(1.5)| 5.42 x 10~4 ,

|£2(1.5) - /(1.5)| « 6.44 x 10-4
,

|/*j(1.5) - /(1.5)| 2.5 x 10-6
,

|P3(1.5) - /(1.5)| ss 1.50 x 10-s
,

|/*4(1.5)- /(1.5)|« 7.7 x 10"6.
Although /*3(1 -5) is the most accurate approximation, if we had no knowledge of

the actual value of / (1.5), we would accept /*4 (1.5) as the best approximation because it
includes the most data about the function. The Lagrange error term cannot be applied here
because we have no knowledge of the fourth derivative of / . Unfortunately, this is generally
the case.

Neville's Method

A practical difficulty with Lagrange interpolation is that because the error term is difficult
to apply, the degree of the polynomial needed for the desired accuracy is generally not
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3.2 Lagrange Polynomials 71

known until the computations are determined. The usual practice is to compute the results
given from various polynomials until appropriate agreement is obtained, as was done in the

previous example. However, the work done in calculating the approximation by the second

polynomial does not lessen the work needed to calculate the third approximation; nor is the

fourth approximation easier to obtain once the third approximation is known, and so on.To
derive these approximating polynomials in a manner that uses the previous calculations to

advantage, we need to introduce some new notation.
Let / be a function defined at XQ, x\,*2, .. • , x„ and suppose that m1, m2, ... , mk are

k distinct integers with 0 < m , < n for each 1. The Lagrange polynomial that agrees with

f ( x ) at the k points*m, , xm2
,... , xmk is denoted Pmi ,„2 mk

( x ).

Example 3 Suppose that xo = 1, x\ = 2, *2 = 3, *3 = 4, x4 = 6, and fix ) = ex . Determine the
interpolating polynomial denoted ft,2,4(3).and use this polynomial to approximate /(5).

Solution This is the Lagrange polynomial that agrees with fix ) at x\ = 2,*2 = 3, and
x4 = 6. Hence

7*1 ,2.4(*)
jx - 3)(x -6) 2

jx - 2 ) jx - 6) 3 jx - 2 ) jx - 3) 6

(2- 3)(2 — 6)
e +

(3- 2)(3- 6)
e

(6- 2)(6- 3)* '

So

/(5)* Pi.2.4(5) =
(5-3)(5- 6) 2

(2- 3)(2- 6)
e +

(5- 2)(5-6) , (5 — 2)(5 — 3) s
(3 — 2)(3 - 6 )

C +
(6- 2)(6- 3)

C

=- L2 + e3 + L6
*s 218.105.

2 2

The next result describes a method for recursively generating Lagrange polynomial

approximations.

Recursively Generated Lagrange Polynomials

Let / be defined at X Q , X\ , . .. ,** and x j , X j be two numbers in this set. If

Pix ) =
ix - Xj ) Pot1 /—i.y+i kix )- ix ~ Xj )P0A i-i.i-f! *(*)

i X i - X j )

then Pix ) is the kth Lagrange polynomial that interpolates, or agrees with, /(JC) at the
k + 1 points XQ , X\ xk .

To see why this recursive formula is true, first let Q = Po.i 1-1.1+1 * and £ =
P0,\ j- ] , j+ ] k - Since Q(x ) and Qix ) are polynomials of degree at most k — 1,

n / x
( x - X j )Q(x ) - ( X - X , )Q( X )

fa ~ X j )

must be of degree at most k. If 0 < r < k with r / i and r / j, then Q (xr ) = Q (xr ) =
f ( xr ),so

P M =
fa - X j ) j)( X r ) ~ ( X r ~ X , )Q( x r ) _ fa - X j )

^ ^ ^X i - X j fa - X j )
S ( X r
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72 C H A P T E R 3 Interpolation and Polynomial Approximation

Moreover,

PM . <m>g<*> - <« -«> <*» , . / M .
X i - X j (X i - x,)

and similarly, T^x,) = /(x;). But there is only one polynomial of degree at most k that
agrees with /(x) at xo, XI,...,x*, and this polynomial by definition is Po.i *(x).Hence,

POA hW = =
(* - XJ ) PQA J - IJ + I *(*) ~ (*- Xi ) Po.i i- i,.+1 kW

( X i - X j )

Table 3.3

Program NEVLLE31

implements the Neville’s

method.

Eric Harold Neville (1889-1961)

gave this modification of the

Lagrange formula in a paper

published in 1932 fN|.

This result implies that the approximations from the interpolating polynomials can
be generated recursively in the manner shown in Table 3.3. The row-by-row generation is
performed to move across the rows as rapidly as possible, because these entries are given

by successively higher-degree interpolating polynomials. This procedure is called Neville’s
method .

Xo Po

*1 Pi POA
X 2 Pi PI .2 POA.2
X 3 P'S P2.3 P1.2.3 Po.1.2,3

x4
p

4 PSA PlAA Pl.2,3,4 PD.1.2,3.4

The P notation used in Table 3.3 is cumbersome because of the number of subscripts
used to represent the entries. Note, however, that as an array is being constructed, only two

subscripts are needed. Proceeding down the table corresponds to using consecutive points

Xi with larger i, and proceeding to the right corresponds to increasing the degree of the

interpolating polynomial. Since the points appear consecutively in each entry, we need to

describe only a starting point and the number of additional points used in constructing the

approximation. To avoid the cumbersome subscripts we let Q i j {x), for 0 < j < i, denote

the jth interpolating polynomial on the j + 1 numbers x, _
;, x,_

y+ i , ... , x,_
i , x,; that is,

Qi . j = Pi- j ,l- j+ l 1-1,i *

Using this notation for Neville’s method provides the Q notation in Table 3.4.

Table 3.4
*0 Po — Qo.o

Xi P\ = 0i.o P O A = 0u
X2 Pj = 02.0 ft.2 = 02.1 Po.1.2 = 02.2
X3 Pi = 03.0 ft,3 = Oil P\.2.3 = 03.2 Po.1.2.3 = 03.3
Xd ft = 04.0 PSA = 04.1 PiAA = 04.2 P\.2.3.4 = 04.3 TV 1,2.3.4 = 04.4

Example 4

Table 3.5

i Xi In x ,

0 2.0 0.6931

1 2.2 0.7885
2 2.3 0.8329

Table 3.5 lists the values of f ( x) = In x accurate to the places given. Use Neville’s method
and four-digit rounding arithmetic to approximate / (2.1) = In 2.1 by completing the

Neville table.

Solution Because x - xo = 0.1, x - xi = —0.1, x — xz = -0.2, and we are given

0o,o = 0.6931, fii.o = 0.7885, and 02,o = 0.8329, we have

1 0.1482
CM = 5^

1(0.1)0.7885- (-0.1)0.6931] = = 0.7410
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3.2 Lagrange Polynomials 73

and

1 0.07441
(22.1 = QY [(-0.1)0.8329 - (-0.2)0.7885] = = 0.7441.

The final approximation we can obtain from this data is

1 0.2276
(22.2 = Q 3

[(0.1)0.7441 - (-0.2)0.7410] = = 0.7420.

These values are shown in Table 3.6.

Table 3.6 •

X i X — X j 0<o Qn 0/2

0 2.0 0.1 0.6931
1 2.2 -0.1 0.7885 0.7410
2 2.3 -0.2 0.8329 0.7441 0.7420

If the latest approximation, @2.2» is not as accurate as desired, another node, X3, can be
selected and another row can be added to the table:

*3 03,0 03,1 03,2 03,3*

Then £2, 2. 03,2 » and Q3.3 can be compared to determine further accuracy.

Using*3 = 2.4 in Example 4 gives no improvement of accuracy because the additional
row is

2.4 0.8755 0.7480 0.7420 0.7420.

Had the data been given with moredigits of accuracy, there might have been an improvement.

E X E R C I S E S E T 31

1. For the given functions / (x), let x0 = 0, x\ = 0.6, and x2 = 0.9. Construct the Lagrange interpolating
polynomials of degree (i) at most 1 and (ii) at most 2 to approximate / (0.45), and find the actual

error.

a. /(*) = cos x b. f ( x ) = yr+1

c. / (x) = ln(x + l ) d. /(x) = tanx

2. Use the Lagrange polynomial error formula to find an error bound for the approximations in Exercise 1 .

3. Use appropriate Lagrange interpolating polynomials of degrees 1 , 2, and 3 to approximate each of
the following:

a. / (8.4) if /(8.1) = 16.94410, /(8.3) = 17.56492, / (8.6) = 18.50515, /(8.7) = 18.82091

b. / (-\ ) if /(-0.75) = -0.07181250, / (-0.5) = -0.02475000, /(-0.25) = 0.33493750,

/ (0) = 1.10100000

c. / (0.25) if / (0.1) = 0.62049958, /(0.2) = -0.28398668, / (0.3) = 0.00660095, /(0.4) =
0.24842440

d. / (0.9) if / (0.6) = -0.17694460, / (0.7) = 0.01375227, /(0.8) = 0.22363362, /(1.0) =
0.65809197

4. Use Neville’s method to obtain the approximations for Exercise 3.

5. Use Neville’s method to approximate \/3 with the function /(x) = 3' and the values xo = -2,

X| = — 1 , X2 = 0, x y = 1 , and x4 = 2.
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74 C H A P T E R 3 Interpolation and Polynomial Approximation

6. Use Neville’s method to approximateV3 with the function f i x ) = Jx and the values XQ = 0, x x = 1 ,

x2 = 2, X ) = 4, and x4 = 5. Compare the accuracy with that of Exercise 5.

7. The data for Exercise 3 were generated using the following functions. Use the error formula to find a

bound for the error and compare the bound to the actual error for the cases n = 1 and n = 2.
a. f ( x ) = x l n x

b. f ( x) = x3 + 4.001*
2 + 4.002* + 1.101

c. f ( x ) = * cos* - 2*
2 + 3* - 1

d. /(*) = sin(e* — 2)

8. Use the Lagrange interpolating polynomial of degree 3 or less and four-digit chopping arithmetic to

approximate cos0.750 using the following values. Find an error bound for the approximation.

cos0.698 = 0.7661 cos0.733 = 0.7432
cos0.768 = 0.7193 cos0.803 = 0.6946

The actual value of cos0.750 is 0.7317 (to four decimal places). Explain the discrepancy between the

actual error and the error bound.

9. Use the following values and four-digit rounding arithmetic to construct a third Lagrange polyno-

mial approximation to / ( 1.09). The function being approximated is /(*) = log10(tanx). Use this

knowledge to find a bound for the error in the approximation.

/ (1.00) = 0.1924 / (1.05) = 0.2414 / (1.10) = 0.2933 /(1.15) = 0.3492

10. Repeat Exercise 9 using MATLAB in long format mode.

11. Let P3(x) be the interpolating polynomial for the data (0, 0). (0.5 , y ), (1, 3), and (2 , 2). Find y if the
coefficient of x3 in P3(x) is 6.

12. Neville’s method is used to approximate / (0.5), giving the following table.

*o = 0 P0 = 0

x, = 0.4 P{ = 2.8 P0 1 = 3.5

*2 = 0-7 Pi _fY2 P.M.2 = f

Determine P2 = /(0.7).

13. Suppose you need to construct eight-decimal-place tables for the common , or base-10, logarithm
function from * = 1 to * = 10 in such a way that linear interpolation is accurate to within 10~6.

Determine a bound for the step size for this table. What choice of step size would you make to ensure

that * = 10 is included in the table?

14. Suppose Xj = j for j = 0, 1 , 2, 3 and it is known that

P0il (x) = 2* + 1, F0.2C*) = x + 1 . and />, .2.3(2.5) = 3.

Find P0, I .2.3(2.5) .

15. Neville’s method is used to approximate / (0) using /(-2), /(- 1) , /( 1 ), and / (2). Suppose /( — 1 )

was overstated by 2 and / ( 1) was understated by 3. Determine the error in the original calculation of
the value of the interpolating polynomial to approximate /(0).

16. The following table lists the population of the United States from 1960 to 2010.

Year 1960 1970 1980 1990 2000 2010

Population (thousands) 179,323 203,302 226,542 249,633 281,442 307,746

a. Find the Lagrange polynomial of degree 5 fitting this data, and use this polynomial to estimate
the population in the years 1950, 1975 , and 2020.

b. The population in 1950 was approximately 151,326,000. How accurate do you think your 1975
and 2020 figures are?
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17. In Exercise 15 of Section 1.2, a Maclaurin series was integrated to approximate erf( l ). where erf(x)

is the normal distribution error function defined by

2 f x 2
erf(x) =

^ J o e ' <*'•

a. Use the Maclaurin series to construct a table for erf(x) that is accurate to within 10-4 for erf(x, ),

where x, = 0.2i, for / = 0, 1, . . . . 5.

b. Use both linear interpolation and quadratic interpolation to obtain an approximation to erf( \ ).

Which approach seems more feasible?

— 3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively higher degree
polynomial approximations at a specific point. Divided-difference methods introduced in
this section are used to successively generate the polynomials themselves.

Divided Differences

We first need to introduce the divided-difference notation, which should remind you of the
Aitkcn’s A2 notation defined on page 53. Suppose we are given the n + 1 points (JCO, /(*o)).
(JCI , /(*i )), . . . (JC , / (x„)). There are n + 1 zeroth divided differences of the function / .

For each i = 0, 1 , . . . , n we define /[*,] simply as the value of / at :

/[*,] = /(*,)•

The remaining divided differences are defined inductively. There are n first divided differ-
ences of / , one for each i = 0, 1 , . . . , n — 1. The first divided difference relative to x , and

x i+i is denoted /[*, , JC,+ I]and is defined by

f lXhXi+ l ] =
f*±iWhl.

X i +1 X j

After the (A: — l )st divided differences,

f [ x i y X i+ i , x l+2 , . . . . X i +k- i ] and f [ x i+1 , x1+2 » • • • * *;+*],

have been determined, the Arth divided difference relative to xl+ i , x< +2, . . . , x, +* is
defined by

/[*« • X,+l , ... , X|+*
_

1,*/+*] /
"[Xi+ i > 2, • • • » Xi+ifc] f [ X j , Xj+ l » .. . , X|+£

_
i ]

X i+k - X i

As in so many areas, Isaac

Newton is prominent in the study

of difference equations. He

developed interpolation formulas

as early as 1675, using his A

notation in tables of differences.
He took a very general approach

to the difference formulas, so

explicit examples that he

produced, including Lagrange’s

formulas, are often known by

other names.

The process ends with the single nth divided difference,

f\.X 1 1 X 2t • • • * X f l] f [ X Q $ X i f .•.|
/[*0 , *1 x„] =

X n - X0

With this notation, it can be shown that the nth Lagrange interpolation polynomial for /
with respect to X Q , X\ , . . . , x n can be expressed as

P n( x ) = f [x0 ] + /[*0,*l ](*- X o ) + f i x0, X U x2 )( x - X0 )( x -Xj) + • • •

+ /[*0 , *1 *i» K*-*o)(*-*!) • • • (* - X n-i )

which is called Newton's divided-difference formula. In compressed form we have the
following .
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