
C H A P T E R

5 Numerical Solution of Initial-Value Problems

5.1 Introduction

Differential equations are used to model problems that involve the change of some variable

with respect to another. These problems require the solution to an initial-value problem—
that is, the solution to a differential equation that satisfies a given initial condition.

In many real-life situations, the differential equation that models the problem is too

complicated to solve exactly, and one of two approaches is taken to approximate the so-
lution. The first approach is to simplify the differential equation to one that can be solved
exactly, and then use the solution of the simplified equation to approximate the solution

to the original equation. The other approach, the one we examine in this chapter, involves
finding methods for directly approximating the solution of the original problem. This is the

approach commonly taken because more accurate results and realistic error information can
be obtained.

The methods we consider in this chapter do not produce a continuous approximation

to the solution of the initial-value problem. Rather, approximations are found at certain
specified, and often equally-spaced, points.Some method of interpolation, commonly cubic
Hermite, is used if intermediate values are needed.

The first part of the chapter concerns approximating the solution y(t) to a problem of
the form

d y— = f (t , y), for a < t < b,
a t

subject to an initial condition

y(a ) = or.

These techniques form the core of the study because more general procedures use these

as a base. Later in the chapter we deal with the extension of these methods to a system of
first-order differential equations in the form

dyi

dt = f\{ttyuy2> . - - , yn )>

dyi

dt
f2(t * yu y i % -" *

yn )%

dyn

dt
fn(t , yu yi yn ),

for a < t < b, subject to the initial conditions

3Pi (a) = ai, y2(a ) = o t2 % yn(a ) = c tn.
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174 C H A P T E R 5 Numerical Solution of Initial-Value Problems

We also examine the relationship of a system of this type to the general nth-order initial-
value problem of the form

yM = f (t , y , y\ y«-»)

for a < t < by subject to the multiple initial conditions

y(a ) = of0, y\a ) = y (n ~ x\a ) = a„-i.

Well-Posed Problems

Before describing the methods for approximating the solution to our basic problem, we
consider some situations that ensure the solution will exist. In fact, because we will not be

solving the given problem, only an approximation to the problem, we need to know when

problems that are close to the given problem have solutions that accurately approximate the

solution to thegiven problem.This property of an initial-value problem is called well-posed,

and these are the problems for which numerical methods are appropriate. The following
result shows that the class of well-posed problems is quite broad.

Well-Posed Condition

Suppose that / and /y, its first partial derivative with respect to y, are continuous for t

in [a , b ] and for all y.Then the initial-value problem

y' = /(f , y), fora < t < b, with y (a ) = a ,

has a unique solution y( t ) for a < t < b, and the problem is well-posed.

Example 1 Consider the initial-value problem

y' = 1+ 1 sin(fy), for 0 < t < 2, with y (0) = 0.

Since the functions

/(/, y ) = 1 + t sin(/y) and fy (t , y ) = t 2 cos(/y)

are both continuous for 0 < t < 2 and for all y, a unique solution exists to this well-posed

initial-value problem.
If you have taken a course in differential equations, you might attempt to determine

the solution to this problem by using one of the techniques you learned in that course.

5.2 Taylor Methods

The methods in this section use

Taylor polynomials and the

knowledge of the derivative at a

node to approximate the value of

the function at a new node.

Many of the numerical methods we saw in the first four chapters have an underlying deriva-
tion from Taylor’s Theorem. The approximation of the solution to initial-value problems

is no exception. In this case, the function we need to expand in a Taylor polynomial is the
(unknown) solution to the problem, y(f ). In its most elementary form, this leads to Euler’s
Method. Although Euler’s method is seldom used in practice, the simplicity of its deriva-
tion illustrates the technique used for more advanced procedures, without the cumbersome

algebra that accompanies these constructions.
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5.2 Taylor Methods 175

The use of elementary difference

methods to approximate the

solution to differential equations

was one of the numerous

mathematical topics that was first

presented to the mathematical

public by the most prolific of

mathematicians. Leonhard Euler

(1707-1783).

The objective of Euler’s method is to find, for a given positive integer N , an approxi-
mation to the solution of a problem of the form

d y „
— = /(f , y), i o ta < t < b , with y(a ) = a
d t

at the N + 1 equally-spaced mesh points {r0, t \ , f2, • • . f ,v ) (see Figure 5.1). The common
distance between the points, h = (b — a )/ N , is called the step size, and

/, = a 4- i h, for each j = 0, 1, ...N .
Approximations at other values of / in [a , b ] can then be found using interpolation.

Figure 5.1
y

yM = y(b ) y' = f (uy\

^
.

y{a ) = a S

yit^ /
yit .)

y( to) = a

*0 — a 11 12 • • • TH — b t

Suppose that y (t ),the solution to the problem, has two continuous derivatives on [a , b\ y

so that for each j = 0, 1, 2, ... , N — 1, Taylor’s Theorem implies that

(*. .
yft+ i) = yfo) + to+i -*>/<*> + --

2 —/(ft),

for some number in ft , f,+ i). Letting h = (b - a )/ N = f,+ i - /j, we have

h2

y(*+i> - + */ <M + y/(6).
and, since y (t ) satisfies the differential equation y'(f ) = /(r, y (r)),

yft+i) = y( t, ) + A/ft.yfo)) + yy"(fe).

Euler’s method constructs the approximation w, to y(fj) for each i = 1, 2, ... , N by

deleting the error term in this equation. This produces a difference equation that approxi-
mates the differential equation. The term local error refers to the error at the given step if
it is assumed that all the previous results are exact. The true, or accumulated, error of the

method is called global error.

Euler's Method

w0 = a ,

w,-+ I = w, + h f ( t i t w,),

where i = 0, 1, ... , N — 1, with local error \ y" (%i )h2 for some £, in (tit f,+ j ).
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176 CHAPTER 5 - Numerical Solution of Initial-Value Problems

Illustration In Example 1 we will use Euler’s method to approximate the solution to

/ = y- r2 + l, 0 < r < 2, y(0) = 0.5,

at t = 2. Here we will simply illustrate the steps in the technique when we have h = 0.5.
For this problem /(/, y ) = y — t2 + 1, so

w0 = y (0 ) = 0.5;

w , = w0 + 0.5(w0- (0.0)2 + 1) = 0.5 + 0.5(1.5) = 1.25;

w2 = w\ + 0.5(wi - (0.5)2 + 1) = 1.25 + 0.5(2.0) = 2.25;

w3 = w2 + 0.5(W2 - (1.0)2 + 1) = 2.25 + 0.5(2.25) = 3.375;

and

y (2) » w4 = w3 + 0.5(W3- (1.5)2 -I- 1) = 3.375 + 0.5(2.125) = 4.4375.

To interpret Euler’s method geometrically, note that when w, is a close approximation

to y ( ti ), the assumption that the problem is well-posed implies that

The program EULERM51

implements Euler's

method.

fOi , Wf) y' (tj ) = f (th yfc )).

The first step of Euler’s method appears in Figure 5.2(a), and a scries of steps appears in

Figure 5.2(b).

Figure 5.2

y

w I
a -
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b t

(a)

y
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i b l
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Example 1 Euler’s method was used in the Illustration with h = 0.5 to approximate the solution to the
initial-value problem

/ = y
_ ,2 + l , 0 < l < 2, y(0) = 0.5.

Use the program EULERM51 with N = 10 to determine approximations, and compare
these with the exact values given by y(t ) = (t + l)2 - 0.5e'.

Solution With N = 10 we have h = 0.2, tx = 0.2i, wo = 0.5, and

wi+i = W i + h ( w j — t f +l) = W i + 0.2 [ w i — 0.0412 + l] = 1.2w* — 0.008i2 + 0.2,
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5.2 Taylor Methods 177

fori = 0, 1, ... , 9. So

w, = 1.2(0.5) — 0.008(0)2 + 0.2 = 0.8; w2 = 1.2(0.8)-0.008(1)2 + 0.2 = 1.152;

and so on. Table 5.1 shows the comparison between the approximate values at r, and the
actual values.

u W i y, = y( t i ) lyi -w/ l

0.0 0.5000000 0.5000000 0.0000000
0.2 0.8000000 0.8292986 0.0292986
0.4 1.1520000 1.2140877 0.0620877
0.6 1.5504000 1.6489406 0.0985406
0.8 1.9884800 2.1272295 0.1387495
1.0 2.4581760 2.6408591 0.1826831
1.2 2.9498112 3.1799415 0.2301303
1.4 3.4517734 3.7324000 0.2806266
1.6 3.9501281 4.2834838 0.3333557
1.8 4.4281538 4.8151763 0.3870225
2.0 4.8657845 5.3054720 0.4396874

Error Bounds for Euler's Method

Euler’s method is derived from a Taylor polynomial whose error term involves the square of

the step size h , so the local error at each step is proportional to /r, so it is 0 ( h2 ).However,
the total error, or global error, accumulates these local errors, so it generally grows at a
much faster rate.

Euler's Method Error Bound

Let y(t ) denote the unique solution to the initial-value problem

y' = f ( t , y ) , f o T a < t < b, withy(a) = a,

and wo, w i, ... , WN be the approximations generated by Euler’s method for some pos-
itive integer N .Suppose that / is continuous for all f in [a , b] and all y in (-oc, oc),
and constants L and M exist with

< L and |y"(/)| < M .
d f

Then, for each i = 0, 1, 2, ... , TV,

ly(f.)-Wj|< — re«'.-°> -
2L

1].

An important point to notice is that, although the local error of Euler’s method, that is,

the error at an individual step, is 0 ( h2), the global error, which is the error over the entire

interval, is only O ( h ).The reduction of one power of h from local to global error is typical

of initial-value techniques. Even though we have a reduction in order from local to global
errors, the formula shows that the error tends to zero with h.

Example 2 The solution to the initial-value problem

y' = y - t2 + 1, 0 < r < 2, y(0) = 0.5,
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178 C H A P T E R 5 Numerical Solution of Initial-Value Problems

was approximated in Example 1 using Euler’s method with h = 0.2. Find bounds for the
approximation errors and compare these to the actual errors.

Solution Because fit , y ) = y - 12 + 1, we have 9 fit , y )/ dy = 1 for all y, so L — 1. For

this problem, the exact solution is yit ) = it + l )2 - 0.5e\so / '(0 = 2 — 0.5e' and

\y"( t )\ < 0.5e2 - 2, for all / 6 [0, 2].

Using the inequality in the error bound for Euler’s method with h = 0.2, L = 1, and

Af = 0.5e2 - 2 gives

|yi - wf \ < 0.1(0.5e2 -2)(«?"- 1).

Hence

|>(0.2)- wH < 0.1(0.5e2 - 2)(e02- 1) = 0.03752;

|y(0.4)-w21 < 0.1(0.5e2 - 2)(e04- 1) = 0.08334;

and so on. Table 5.2 lists the actual error found in Example 1, together with this error
bound. Note that even though the true bound for the second derivative of the solution was
used, the error bound is considerably larger than the actual error, especially for increasing
values of t. m

Table 5.2

ti 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Actual Error 0.02930 0.06209 0.09854 0.13875 0.18268 0.23013 0.28063 0.33336 0.38702 0.43969

Error Bound 0.03752 0.08334 0.13931 0.20767 0.29117 0.39315 0.51771 0.66985 0.85568 1.08264

Higher Order Taylor Methods

Euler’s method was derived using Taylor’s Theorem with n = 1, so the first attempt to find

methods for improving the accuracy of difference methods is to extend this technique of
derivation to larger values of n . Suppose the solution y i t) to the initial-value problem

y' = f i t , y ) , i o r a < t < b, withy (a) = of,

has n + 1 continuous derivatives. If we expand the solution y (f ) in terms of its nth Taylor
polynomial about f,, we obtain

h2 hn hn+*
yfo+i ) = yOi ) + h y\u ) + — y”( i i ) + • • • + —y^ft) + . ...y("+l ) (fe )

2 n\ in + 1)!

for some number £, in (/,, Successive differentiation of the solution y (f ) gives

y' (t) = f i t ,y(0). y"(t ) = f i t , y i t ) ) , and, generally, y { k ) i t ) = f k~ l )(t , y i t ) ) .

Substituting these results into the Taylor expansion gives

h2

yfe+ i ) = yM + hf i t i t y i t i ) ) + y/'fa , yM ) + • • •

hn /,*+1

+ yfe)) + ——r/Wfc.y®)).
n! in + 1)!

The difference-equation method corresponding to this equation is obtained by deleting

the remainder term involving
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5.2 Taylor Methods 179

Taylor Method of Order n

W0 = Of,

Wr+l = w,+hT w( f i ,Wi )

for each i = 0, 1, ... , N — 1, where

Wi ) = /«,.wi) + J fXh ,w,) + • • • + Wi ).
2 nl

The local error is

^^-y
(n+1)(f,)/i'

,+1 for some £, in (/,, f,+i).

The formula for T (n ) is easily expressed but difficult to use because it requires the

derivatives of / with respect to t . Since / is described as a multivariable function of both

t and y, the chain rule implies that the total derivative of / with respect to t, which we
denoted /'(r, y (f )), is obtained by

ro. y ( t ) ) = g (r,*0) • £ + = ga, y(0) +

or, since y'(r ) = /(f , y(0), by

/'(f.y(0) = ^(', y(0) + /(f , y(0)% (f y (0).
3/ 3y

Higher derivatives can be obtained in a similar manner, but they might become increasingly

complicated. For example, /"(/ , y (f )) involves the partial derivatives of all the terms on
the right side of this equation with respect to both t and y .

Example 3 Apply Taylor’s method of orders (a) 2 and (b) 4 with N = 10 to the initial-value problem

y' = y - t2 +\, 0 < r < 2, y(0) = 0.5.

Solution (a) For the method of order 2 we need the first derivative of /(f , y(f )) = y(t ) -
t 2 + 1 with respect to the variable t . Because y' = y — t 2 + 1 we have

f (t , y(t ) ) = U y- t2 + l ) = y' - 2t = y - t2 + l - 2t ,
at

so

Ti2 )(tit = /(/,, w^ + ^/'(*,, = Wi - tf + 1 + ^ (w, - t 2 + 1-2f|)

= ( l + (w, ~ t?+1) - h t i .

Because A = 10 we have h = 0.2, and /, = 0.2/ for each i = 1, 2, ... . 10. Thus the

second-order method becomes

w0 = 0.5,

W/+I = W i + h ^1 + ^ (w, - t f +1) - h t,

= w, + 0.2|^1 + ("i - 0.04/ 2 + 1) - 0.04i

= 1.22w,-0.0088/ 2-0.008/ + 0.22.
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180 C H A P T E R 5 Numerical Solution of Initial-Value Problems

Table 5.3

ti

Taylor

Order 2
w,

Error

lyft)- wi\

0.0 0.500000 0
0.2 0.830000 0.000701
0.4 1.215800 0.001712
0.6 1.652076 0.003135
0.8 2.132333 0.005103

1.0 2.648646 0.007787

1.2 3.191348 0.011407
1.4 3.748645 0.016245
1.6 4.306146 0.022663
1.8 4.846299 0.031122
2.0 5.347684 0.042212

The first two steps give the approximations

y(0.2) as vvi = 1.22(0.5) -0.0088(0)2 -0.008(0) + 0.22 = 0.83;

y(0.4) a; w2 = 1.22(0.83) - 0.0088(0.2)2-0.008(0.2) + 0.22 = 1.2158.

All the approximations and their errors are shown in Table 5.3.
(b) For Taylor’s method of order 4 we need the first three derivatives of f (t , y(t )) with
respect to t.Again using y' = y — t 2 -f 1 we have

/'(*, y(0) = y - 12 +1- 2t ,

f"( t , y(r)) = 4- ( y - t2 + 1-20 = /- 2» - 2 = y- 12 + 1- 2r - 2
at

= y - 12 - 2/ - 1,

and

/"'(*.y(0) =^( y — *
2 — 2r — 1) = / — 2r — 2 = y — t2 — 2r — 1,

SO

T (4 )( tt , w 4 ) = /ft , w,) + ^ / 'ft , Wf ) + ^r/"ft, w4 ) + ^/'"ft, w,-)

= w,- — tf + 1 + - (w, - tf + 1 - 2*i ) + — (w, — tf — 2ti — l)

h h2 /i3\ f 2\ ft h ^
2\ / f . . h h2

Hence Taylor’s method of order 4 is

24
*

w0 = 0.5,— ^ + y (*, - <?)-(i +1 + 1 + 5 ^
hT
2 4

fori = 0, 1 t f -1.
Because N = 10 and h = 0.2 the method becomes

Table 5.4

ti

Taylor
Order 4

w,
Error

|yfo)-w,|
0.0 0.500000 0
0.2 0.829300 0.000001
0.4 1.214091 0.000003
0.6 1.648947 0.000006
0.8 2.127240 0.000010

1.0 2.640874 0.000015

1.2 3.179964 0.000023
1.4 3.732432 0.000032
1.6 4.283529 0.000045

1.8 4.815238 0.000062

2.0 5.305555 0.000083

wj+1 = Wj + 0 .2[ (l + ^ (Wi - 0.04i2)

0 04\
- ( 1 + = + -jj-J (0.04i) + 1 +0 02

3

02

2

0.04 0.008

6 24

= 1.2214*,- -0.008856/
2 - 0.00856/ + 0.2186,

for each i = 0, 1, . .. , 9. The first two steps give the approximations

y(0.2) as H» , = 1.2214(0.5) -0.008856(0)2 -0.00856(0) + 0.2186 = 0.8293;

y(0.4) as W2 = 1.2214(0.8293)-0.008856(0.2)2-0.00856(0.2) + 0.2186 = 1.214091.

All the approximations and their errors arc shown in Table 5.4.

Compare these results with those of Taylor’s method of order 2 in Table 5.3 and you

will see that the order 4 results are vastly superior.
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5.2 Taylor Methods 181

Approximating Intermediate Results

Hermite interpolation requires

both the value of the function and

its derivative at each node. This

makes it a natural interpolation

method for approximating

differential equations because

these data are all available.

The results from Table 5.4 indicate the Taylor’s method of order 4 results are quite accurate

at the nodes 0.2, 0.4, etc. But suppose we need to determine an approximation to an
intermediate point in the table, for example, at / = 1.25. If we use linear interpolation on
the Taylor method of order four approximations at t = 1.2 and t = 1.4, we have

/1.25) «= )3'179964 +
V M-1^ j3'732432 = 3.318081.

The true value is y (1.25) = 3.317329, so this approximation has an error of 0.000752,

which is nearly 30 times the average of the approximation errors at 1.2 and 1.4.
We can significantly improve the approximation by using cubic Hermite interpolation.

To determine this approximation for y (1.25) requires approximations to y'(1.2) and y'(1.4)

as well as approximations to y(1.2) and y( 1.4). However, the approximations for y(1.2) and
y( l .4) arc in the table, and the derivative approximations are available from the differential

equation because y' ( t ) = f ( t , y(t)). In our example y' (t ) = y (f ) — t2 + 1, so

/(1.2) = /1.2)- (1.2)2 + 1 «= 3.179964-1.44 + 1 = 2.739964

and

/(1.4) = /1.4)- (1.4)2 + 1« 3.732433-1.96 + 1 = 2.772432.

The divided-difference procedure in Section 3.4 gives the information in Table 5.5.
The underlined entries come from the data, and the other entries use the divided-difference

formulas.

Table 5.5 1 2 3.179964

2.739964

1.2 3.179964 0.111880
2.762340 -0.307100

1.4 3.732432 0.050460

2.772432
1.4 3.732432

The cubic Hermite polynomial is

/0 «= 3.179964 + (t -1.2)2.739964 + (t - 1.2)20.111880

+ (f - 1.2)2(r- 1.4)(—0.307100),

so

y (1.25) « 3.179964 -I- 0.136998 + 0.000280 + 0.000115 = 3.317357,

a result that is accurate to within 0.000028. This is about the average of the errors at 1.2
and at 1.4, and only 4% of the error obtained using linear interpolation. This improvement

in accuracy certainly justifies the added computation required for the Hermite method.
Error estimates for the Taylor methods are similar to those for Euler’s method. If

sufficient differentiability conditions are met, an nth-order Taylor method will have local

error 0 (hn~ x ) and global error 0 ( hn ).
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182 C H A P T E R 5 Numerical Solution of Initial-Value Problems

E X E R C I S E S E T 5 2

1. Use Euler’s method to approximate the solutions for each of the following initial-value problems.

a. y' — teyi - 2y, for 0 < t < 1, with y(0) = 0 and h — 0.5

b. y = 1 4- (/ — y)2, for 2 < t < 3, with y(2) = 1 and h = 0.5

c. ys 1 + y , for 1 < / < 2, with y(l ) = 2 and h = 0.25

d. y' = cos 21 + sin 3/, for 0 < t < 1, with y(0) = 1 and h = 0.25

2. The actual solutions to the initial-value problems in Exercise 1 are given here. Compare the actual

error at each step to the error bound.

a. y(t ) = ^/e3'-^£
31 4- ^eb. y(/) = t + (1- t )~l

1 . 1 4
c. y(/) = / In / 4- 2/ d. y(t ) = -sin 2/ — -cos 3/ -I- -

w J J

3. Use Euler’s method to approximate the solutions for each of the following initial-value problems.

a. y = j — , for 1 < t < 2, with y( l ) = 1 and h = 0.1

b. y' = 1 4- ~ 4- (^) , for 1 < / < 3, with y(l) = 0 and h = 0.2

c. y' — -( y + l)(y 4- 3), for 0 < t < 2, with y(0) = -2 and h = 0.2

d. y = —5y 4- 5/2 4- 2/, for 0 < / < 1, with y(0) = 1/3 and h = 0.1

4. The actual solutions to the initial-value problems in Exercise 3 are given here. Compute the actual

error in the approximations of Exercise 3.

a. y( t ) = / (1 4- In /)"1

b. y(/) = / tan(ln /)

c. y( t ) = —3 4- 2(1 4- e-2/)-1

d. y(/) = t 2 4-

5. Repeat Exercise 1 using Taylor’s method of order 2.

6. Repeat Exercise 3 using Taylor’s method of order 2.

7. Repeat Exercise 3 using Taylor’s method of order 4.

8. Given the initial-value problem

y' = j y + l 2e' , 1 < I < 2. y(l) = 0

with the exact solution y( f ) = t 2 (e' — e ):

a. Use Euler’s method with h = 0.1 to approximate the solution and compare it with the actual
values of y.

b. Use the answers generated in (a) and linear interpolation to approximate the following values of
y and compare them to the actual values.

i. y(1.04) ii. y(1.55) iii. y(1.97)

c. Use Taylor’s method of order 2 with h = 0.1 to approximate the solution and compare it with

the actual values of y.
d. Use the answers generated in (c) and linear interpolation toapproximate y at the following values

and compare them to the actual values of y.
i. y(1.04) ii. y(1.55) iii. y(1.97)

e. Use Taylor’s method of order 4 with h = 0.1 to approximate the solution and compare it with
the actual values of y.

Copyright 2012 Cc«£»fc Learnin*. AI R.(hu Reversed May r*x be copied, canned, o* duplicated.» whole oe m pan. Doc to electronic rifhu.vomc third pony content may be vupprcv«d ftem the eBook and/or cCh<xcn» l . Editorial roiew h*>

deemed Cut any vuppicwcd content dee> not tmxtlaly alTect the overall Icamir.it experience. Ccri|tape Learn xip rexxvev the rljtlu lo remote additional conceal at any time i i vutoeqjroi nghtv rotrictionv require It



5.3 Runge-Kutta Methods 183

f. Use the answers generated in (e) and piecewise cubic Hermite interpolation to approximate y at

the following values and compare them to the actual values of y.
i. y(1.04) ii. >(1.55) iii. >(1.97)

9. Given the initial-value problem

y' = }i -* - y2
'

i < » < 2. :y(U = -i

with the exact solution >(/) = -1/ f.
a. Use Euler’s method with h = 0.05 to approximate the solution and compare it with the actual

values of >.
b. Use the answers generated in (a) and linear interpolation to approximate the following values of

> and compare them to the actual values.

i. >(1.052) ii. >(1.555) iii. >(1.978)

c. Use Taylor’s method of order 2 with h = 0.05 to approximate the solution and compare it with

the actual values of >.
d. Use the answers generated in (c) and linear interpolation to approximate the following values of

> and compare them to the actual values.

i. >(1.052) ii. >(1.555) iii. >(1.978)

e. Use Taylor’s method of order 4 with h = 0.05 to approximate the solution and compare it with

the actual values of >.
f. Use the answers generated in (e) and piecewise cubic Hermite interpolation to approximate the

following values of > and compare them to the actual values.

i. >(1.052) ii. >(1.555) iii. >(1.978)

10. In an electrical circuit with impressed voltage £, having resistance R, inductance L, and capacitance

C in parallel, the current i satisfies the differential equation

di d 2£ 1 d£ 1

dt
~ C ~

d^
+

R
~

dt
+

L
£'

Suppose i (0) = 0, C = 0.3 farads, R = 1.4 ohms, L = 1 . 7 henries, and the voltage is given by

£(t ) = eoab" sin (2f - jr).

Use Euler’s method to find the current i for the values t = 0.1 j, j = 0, 1, ... , 100.

11. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity u(0) = 8 m/s is slowed

due to the force of gravity FK = mg and due to air resistance Fr = — w h e r e g = —9.8 m/s2

and k = 0.002 kg/m. The differential equation for the velocity t; is given by

mu' = mg - & v|v|.

a. Find the velocity after 0.1, 0.2, ... , 1.0 s.

b. To the nearest tenth of a second, determine when the projectile reaches its maximum height and

begins falling.

5.3 Runge-Kutta Methods

In the last section we saw how Taylor methods of arbitrary high order can be generated.
However, the application of these high-order methods to a specific problem is complicated
by the need to determine and evaluate high-order derivatives with respect to t on the right

side of the differential equation. The widespread use of computer algebra systems has

simplified this process, but it still remains cumbersome.
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