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9. Suppose that

2x , 4- x2 + 3*3 = 1
4*i 4- 6x2 + 8x3 = 5
6x1 -t- ax2 4- IOX3 = 5

with |or|< 10.For which of the following values of a will there be no row interchange required when

solving this system using scaled partial pivoting?

a. or = 6 b. a = 9 c. or = —3

6.4 Linear Algebra and Matrix Inversion

Early in this chapter we illustrated the convenience of matrix notation for the study of
linear systems of equations, but there is a wealth of additional material in linear algebra

that finds application in the study of approximation techniques. In this section we introduce

some basic notation and results that are needed for both theory and application. All the
topics discussed here should be familiar to anyone who has studied matrix theory at the

undergraduate level. This section could then be omitted, but it is advisable to read the section

to see the results from linear algebra that will be frequently called upon for service, and to

be aware of the notation being used.
Two matrices A and B are equal if both are of the same size, say, n x m,and if ay = by

for each i = 1, 2,..., n and j = 1, 2, ... » m.
This definition means, for example, that

2 3
‘

-1
7

1
0

because they differ in dimension.

Matrix Arithmetic

If A and B are n x m matrices and A is a real number, then

• the sum of A and B, denoted A 4- B , is the n x m matrix whose entries are ay 4- by ,

• the scalar product of A and A, denoted A A , is the n x m matrix whose entries are Aay.

Example 1 Determine A 4- B and A A when

A =
2 -1 7
3 1 0 *

4 2 -
0 1 6 ’

a n d A = -2.

Solution We have

and

A+ B =
‘

2 4- 4 -1 + 2 7- 8 6 1 -1
3 4- 0 1 + 1 0 + 6 3 2 6

-2(2) —2( —1) -2(7) -4 2 -14
-2(3) -2(1) -2(0) -6 -2 0
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248 C H A P T E R 6 Direct Methods for Solving Linear Systems

Matrix-Matrix Products

If A is an n x m matrix and B is an m x p matrix,

• the matrix product of A and B, denoted AB , is an n x p matrix C whose entries cy are
given by

m

Cij = ^ aikbkj = 0,1 + 0,2^2; H H aimbmjt
k =1

for each i = 1, 2,... ft and y = 1, 2, ... , p.

The computation of c,y can be viewed as the multiplication of the entries of the i ih row
of A with corresponding entries in the yth column of B, followed by a summation; that is,

a«2 » • • • . Aim ]

K
bij

b'mj .

= ICij],

where

m

= ai\b\ j + o,2^2; H H aimbmj = ^ alkbkj .
*= i

This explains why the number of columns of A must equal the number of rows of B for the

product AB to be defined.
The following example illustrates a common matrix multiplying operation in the case

when the matrix on the right of the multiplication has only one column, that is, it is a column

vector.

3 2
'

Example 2 Determine the product Ab if A = -1 1
6 4

and b =
J

-1

Solution Because A has dimension 3 x 2 and b has dimension 2 x 1, the product is defined

and is 3 x 1, that is, a vector with three rows. These are

3(3) + 2( —1) = 7, (—1)(3) +!(-!) = -4, and 6(3) + 4(-l) = 14.

So
'

3 2
'

'X

'

7
'

-1 1
j

-1 = -4
6 4 14

In the next example we consider product operations in various situations.

Example 3 Determine all possible products of the matrices

3 2
'

2 1 -1
3 1 2

2 1 0 1
'

A = -1 1 , B = , c = -1 3 2 1
1 4 1 1 2 0

and
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6.4 Linear Algebra and Matrix Inversion 249

The term diagonal applied to a

matrix refers to the entries in the

diagonal that run from the top left

entry to the bottom right entry.

Illustration

Solution The sizes of the matrices are

A: 3 x 2, B: 2 x 3, C: 3 x 4, a n d D: 2 x 2.

The products that can be defined, and their dimensions, are:

AB: 3 x 3, BA: 2 x 2, AD: 3 x 2, BC: 2 x 4, DB: 2 x 3, a n d DD: 2 x 2.

These products are

AB =

‘

12 5 1
"

1 0 3 , BA =
4 1 , AD = o

1
r»—•i

14 5 7
10 15

9 -5

BC =
2 4 0 3
7 8 6 4

1 0 -
1 i -4

and DD =
-1 0

0 -1

Square Matrices

We have some special names and notation for matrices with the same number of rows and

columns.

• A square matrix has the same number of rows as columns.

• A diagonal matrix is a square matrix whose only nonzero elements are along the main
diagonal. So if D = [</,;] is a diagonal matrix, then djj = 0 whenever i # j.

• The identity matrix of order n, In = [6j;], is a diagonal matrix with 1s along the diagonal.
That is,

In

' 1 0 0 '

o i

L o
\ \ 0

• • •
'

0
‘

l .

When the size of /„ is clear, this matrix is generally written simply as 7. For example,

the identity matrix of order three is

'

1 0 0
'

0 1 0 .
0 0 1

If A is any n x n matrix and 7 = /„, then A1 = IA = A.

Consider the identity matrix of order three.

/3 =
1 0 0
0 1 0
0 0 1

If A is any 3 x 3 matrix, then

A /3

«11 «12 «13
'

1 0 0
"

«11 «12 «13

«21 «22 «23 0 1 0 = «21 «22 «23

«31 «32 «33 0 0 1 fl31 a32 «33
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250 C H A P T E R 6 Direct Methods for Solving Linear Systems

A triangular matrix is one that

has all its nonzero entries either

on and above (upper) or on and

below (lower) the main diagonal

A matrix is diagonal precisely

when it is both upper- and

lower-triangular.

An n x n upper-triangular matrix U = [K,;] has all its nonzero entries on or above
the main diagonal, that is, for each j = 1, 2, ... , n, the entries

Ui j = 0, for each i = j + 1, j + 2, ..., n.
In a similar manner, a lower-triangular matrix L = [/l;] has all its nonzero entries on or
below the main diagonal, that is, for each j = 1 , 2, . . . , n, the entries

l i j = 0, for each i = 1, 2,..., j — 1.
(A diagonal matrix is both upper and lower triangular.)

In Example 3 we found that, in general, AB ^ BA, even when both products are
defined. However, the other arithmetic properties associated with multiplication do hold.
For example, when A , B , and C are matrices of the appropriate size and A is a scalar, we
have

• A( BC ) = (Afl)C,

• A( B + C) = AB + AC ,and

• A(Atf ) = (AA )# = A(Afl ).

Inverse Matrices

The word singular means

something that deviates from the

ordinary. Hence a singular matrix

docs not have an inverse.

Certain n x n matrices have the property that another n x n matrix, which we will denote
A-1 , exists with AA-1 = A-1A = / . In this case A is said to be nonsingular, o r invertible,
and the matrix A-1 is called the inverse of A.A matrix without an inverse is called singular,

or noninvertible.

Example 4 Let

1 2 -1
' H i -n

A = 2 1 0

-1 1 2
a n d B =

i

Wl—vOlX
*

1

U
»
l—vOI
*— U*

l—vOlbJ
•

Show that B = A ”1, and that the solution to the linear system described by

X \ + 2x2 - *3 = 2,

2x { + x2 = 3,

—x\ + xi + 2x3 = 4.

is given by the entries in Bb, where b is the column vector with entries 2, 3, and 4.

Solution First note that

1 2 -1
' [ -1 I -1 1 '

1 0 0
'

AB = 2 1 0

-1 1 2
• l 1

L - j i i J
— 0 1 0

0 0 1

In a similar manner, BA = /3, so A and B are both nonsingular with B = A-1 and
A = B~ K

Now convert the given linear system to the matrix equation

1 2 -1
'

*i
" '

2
'

2 1 0 X 2 = 3

-1 1 2 . X3 . 4
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6.4 Linear Algebra and Matrix Inversion 251

Illustration

and multiply both sides by B , the inverse of A . Then we have

with

B( Ax ) = Bb,

B( Ax ) = (BA )x =

2
9
4
9
3
9

I ~ k_
I
9
3
9

2
9
3
9 -

1 2 -1
2 1

-1 1

0
2

X = X

and

Bb =

I
1

_
!

9
i

1 -I
i
5

9
1

2
3
4

7
9

13
9
5

This implies that x = Bb and gives the solution x\ = 7/9, x2 = 13/9, and *3 = 5/3.

The reason for introducing this matrix operation at this time is that the linear system

aux\ + a ] 2x2 + • • • + a ] nxn = bu

a21*1 + 022*2 + 1- a2n X n = b2 y

an\ X\ + an2*2 + 1- annxn = bny

can be viewed as the matrix equation Ax = b, where

'

au an • • • a\n
’

*i
' '

bi

A =
an an • • • a^ , x =

*2
, and b =

b2

. an , an2 * * ’ ann . - . bn .

If A is a nonsingular matrix, then the solution x to the linear system Ax = b is given

by

x = A !(;4X) = A * b.

In general, however, it is more difficult to determine A"1 than it is to solve the system

Ax = b because the number of operations involved in determining A~ ] is larger. Even so,

it is useful from a conceptual standpoint to describe a method for determining the inverse

of a matrix.

To determine the inverse of the matrix

A =
1 2 -1

2 1 0
-1 1 2

Copyright 2012 Cc«£»fc Learnin*. AI R.(hu Reversed May r*x be copied, canned, o* daplicated.» whole oe m pan. Doc to electronic rtphtv. vontc third pony content may be supposed ftcan the eBook aml/of cCh<xcn» l . Editorial roiew h*>

deemed Cut any supprewed content doev not imxttaly alTect the overall leamir*experience . C'c»i|tape Learnop rexxvev the njtht to remove additional conceal at any time i i vutoeqjrni nphtv rotrictionv require It



252 C H A P T E R 6 Direct Methods for Solving Linear Systems

let us first consider the product AB, where B is an arbitrary 3 x 3 matrix.

AB =
1 2 -1
2 1 0

-1 1 2

b\\ b\2 613

^21 bi2 623
bi\ by2 633

b\ 1 + 2bi\ — 63I &12 + 2/?22 — ^>32 ^13 + 2623 — 633
= 2fcn + fc2 l 2612 + 622 2613 + 623

—611 + 621 + 2631 —612 + 622 + 2632 —613 + 623 + 2633

If B = A"1 , then AB = / , so we must have

611 + 2621 - 631 = 1, 612 + 2622 — 632 = 0,

26n + 621 = 0, 2612 + 622 = 1 »

—611 + 621 + 2631 = 0, —612 + 622 + 2632 = 0,

613 + 2623 — 633 = 0

2613 + 6 2 3 = 0

—613 + 623 + 2633 = 1

Notice that the coefficients in each of the systems of equations are the same; the only change

in the systems occurs on the right side of the equations. As a consequence, the computations
can be performed on the larger augmented matrix, which is formed by combining the
matrices for each of the systems

1 2 -1 1 0 0
'

2 1 0 0 1 0
-1 1 2 0 0 1

First, performing (£2 — 2£ j ) - (£1 ) and (£3 + E\ ) (£3) gives
'

1 2 -1 1 0 0
'

0 -3 2 -2 1 0
0 3 1 1 0 1

Next, performing (£3 + £2) - (£3) produces
'

1 2 -1 1 0 0
'

0 -3 2 -2 1 0
0 0 3 -1 1 1

Backward substitution is performed on each of the three augmented matrices,

1 2 -1 f '

1 2 -1 0
"

1 2 -1 0
'

0 -3 2 -2 0 -3 2 1 9 0 -3 2 0
0 0 3 -1 0 0 3 1 0 0 3 1

to eventually give

caiov1II-cT b\2 — 1» 613 =-
II bn = — and 623 =|,

£ II1

U
»
|— bn = 5, £>33 = }•

These are the entries of A 1:

“i i 1
‘ -2 5 -1

'

i -5 l 4 -1 2
9 9 9
1 1 1

“

9 -3 3 3
3 3 3 J

(6.3)
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6.4 Linear Algebra and Matrix Inversion 253

Illustration

Transpose Facts

Transpose of a Matrix

• The transpose of an n x m matrix A = [a,y] is the m x n matrix A 1 = [ay,].

• A square matrix A is symmetric if A = A1 .

The matrices

A =

'

7 2 0
'

3 5 -1 . B =
'

2 4 7
3 -5 -1

, C =
6 4 -3

'

4 -2 0
0 5 -6 -3 0 1

have transposes

'

7 3 0
‘ '

2 3
'

A' = 2 5 5 , Bl = 4 -5 . C' =
0 -1 -6 7 -1

The matrix C is symmetric because Cl — C . The matrices A and B are not symmetric.

The transpose notation is convenient for expressing column vectors in a more compact

manner. Because the transpose of a column vector is a row vector.

the column vector x =
*2

is generally written in text as x = (xj, *2 » • • • , x„ )‘ .

L

The following operations involving the transpose of a matrix hold whenever the oper-
ation is possible .

(i) (A')' = A. (ii) { A A- BY = A' + B' .

(iii) ( AB )
,
= B

,
At . (iv) If A- 1 exists, (A-1 )' = (A')-1 .

Matrix Determinants

The determinant of a square matrix is a number that can be useful in determining the
existence and uniqueness of solutions to linear systems. We will denote the determinant of
a matrix A by det A , but it is also common to use the notation |A|.
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254 C H A P T E R 6 Direct Methods for Solving Linear Systems

Determinant of a Matrix

(i) If A = [a ] is a 1 x 1 matrix, then det A = a.

(ii) If A is an n x n matrix, the minor Af ,; is the determinant of the (n — 1) x
(n — 1) submatrix of A obtained by deleting the i\h row and jth column of

the matrix A.

Then the determinant of A is given either by

or by

det A =Yl-iy+JatjMij for any i = 1, 2,..., a ,

y= i

det A = y>1y+' ajjMjj for any j = 1, 2,....n.
j-i

The notion of a determinant

appeared independently in 1683

in Japan and Europe, although

neither Takakazu Scki Kowa

(1642-1708) nor Gottfried

Leibniz (1646-1716) appear to

have used the term determinant.

To calculate the determinant of a general nxn matrix by expanding by minors requires

0(n!) multiplications/divisions and additions/subtractions.Even for relatively small values

of n, the number of calculations becomes unwieldy. Fortunately, the precise value of the

determinant is seldom needed, and there are efficient ways to approximate its value.
Although it appears that there arc 2n different definitions of det A, depending on which

row or column is chosen, all definitions give the same numerical result. The flexibility in the

definition is used in the following example. It is most convenient to compute det A across
the row or down the column with the most zeros.

Example 5 Find the determinant of the matrix

'

2 -1 3 0
’

, 4 -2 7 0
A = -3 -4 1 5

6 -6 8 0

using the row or column with the most zero entries.

Solution To compute det A , it is easiest to use the fourth column because three of its entries

are 0.

det A = fll4 (— 1)5 A/14 + fl24(— l)
6

Af24 + fl34(— 1)7 A/34 + 044 (-1)8
A/44 =

Eliminating the third row and the fourth column of A and expanding the resulting 3 x 3
matrix by its first row gives

det A = -5 det

2 -1 3
4 -2 7
6 -6 8

= - 5{2 d e t
-2 7
-6 8 — (—1) det

4 7
6 8 + 3det e 3]}

= - 5 [2(—16 + 42) + (32- 42) + 3(-24 + 12)] = -30.

The following properties of determinants are useful in relating linear systems and

Gaussian elimination to determinants.
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6.4 Linear Algebra and Matrix Inversion 255

Determinant Facts

Suppose A is an n x n matrix:

(i) If any row or column of A has only zero entries, then det A — 0.
(ii) If A is obtained from A by the operation (£* ) (£*), with i ^ k , then

det A = -det A.
(iii) If A has two rows or two columns the same, then det A = 0.

(iv) If A is obtained from A by the operation (A£,) -* (£,• ), then det A = k det A.

(v) If A is obtained from A by the operation (£, + A£*) - (£, ) with i ^ k ,

then det A = det A.
(vi) If £ is also an n x n matrix, then det A £ = det A • det B.

(vii) detA' = detA.

(viii) If A-1 exists, then det A-1 = * .
detA

(ix) If A is an upper triangular, lower triangular, or diagonal matrix, then

det A = flu • «22 • • * ann •

Example 6 Compute the determinant of the matrix

2 1 -1 1
‘

. 110 3
A = -1 2 3 -1

3 — i — i 2

using Determinant Facts (ii), (iv), (v), and (ix), and doing the computations in MATLAB.

Solution Matrix A is defined in MATLAB by

A*[2 1 -1 1; 1 1 0 3; -1 2 3 -1; 3 -1 -1 2]

We will use the operations in Table 6.2 to first place the matrix in upper-triangular form.
Then we can use the final determinant fact to contain the result from the entries on the

diagonal. We have used some of these steps to illustrate the commands in MATLAB. For
example, the first operation would not normally be performed when placing the matrix in
upper-triangular form.

Table 6.2 Operation MATLAB Command Effect

-* £i Aid , : ) - A (l , : ) /2 det A 1 = 1 det A

Ei — E\ — Ei A2 (2 , : ) =A1 (2 , : )-Al ( l , : ) det A2 = det A 1 = 1 det A

£3 + E, - £3 A3(3 , : ) =A2(3 , : ) +A2( l , : ) det A3 = det A2 = ^ det A

£4 - 3£ j - £4 A4 (4 , : ) aA3(4 , : ) -3*A3(l , : ) det A4 = det A3 = \ det A

2£2 - £2 A5 (2 , : ) =2*A4 (2 , : ) det A5 = 2det A4 = det A

tUJmin1en A6 (3 , : ) =A5 (3 , : )-2.5*A5 (2 , :) det A6 = det A5 = det A

£4 + ^ £2 “ £4 A7 (4 , : ) =A6 (4 , : ) +2.6*A6 (2 , :) det A7 = det A6 = det A

£3 £4 B=A7 (3 , : ) , A8 (3 , : ) =A7(4 , : ) , A8 (4 , : ) =B det A8 = - det A7 = — det A
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256 C H A P T E R 6 Direct Methods for Solving Linear Systems

After these operations are performed, the matrix will have the form

AS =

4 2 2 2
011 5
0 0 3 13
0 0 0 -13

By (ix), det AS = 1 • 1 • 3(-13) = -39, so det A = -del AS = 39.

The key result relating nonsingularity, Gaussian elimination, linear systems, and de-
terminants is that the following statements are equivalent.

Equivalent Statements about an n x n Matrix A

(i) The equation Ax = 0 has the unique solution x = 0.

(ii) The system Ax = b has a unique solution for any n-dimensional column

vector b.

(iii) The matrix A is nonsingular; that is, A-1 exists.

(iv) det A / 0.

(v) Gaussian elimination with row interchanges can be performed on the system

Ax = b for any n-dimensional column vector b to find the unique solution x.

MATLAB has numerous commands that can directly perform operations on matrices.
For example, for matrices A and B and scalar a, when the operations are possible, the

following MATLAB commands can be used.

• To add A and B : A+B • To multiply A and B: A*B

• To multiply A by a; a*A • To obtain the transpose of A: A’

• To obtain the inverse of A: inv ( A) • To find the determinant of A: det (A)

EXERCISE SET 6 .4

1. Compute the following matrix products.

1 0 0
‘ ‘

1 0 0
'

1 0 0
‘

1 -1 2
a. -1 1 0 • 2 2 0 b. 2 1 0 • 0 1 3

2 3 1 1 -1 1 -2 -1 1 0 0 2
'

1 0 0
'

i 0 0
'

2 -1 4
‘ »

3 -3 4
‘

c. 0 1 0 . 2 1 0 d. 0 -1 2 . 0 1 1
0 -2 1 -3 0 1 0 0 3 0 0 2

2. For the following matrices:

i. Find the transpose of the matrix.
ii. Determine which matrices are nonsingular and compute their inverses.

4 2 6
‘ ‘

1 2 0
'

3 0 7 b. 2 1 -1

-2 -1 -3 3 1 1
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6.4 Linear Algebra and Matrix Inversion 257

‘ 4 0 0 1 1 -1 1
'

0 0 0 1 2 -4 - 2
0 0 3

a.
2 1 1 5

-1 0 -2 --4
'

4 0 0 0
' '

2 0 1 2
6 7 0 0 r 1 1 0 2
9 11 1 0

i.
2 -1 3 1

5 4 1 1 3 -1 4 3

3. Compute the determinants of the matrices in Exercise 2 and the determinants of the inverse matrices

of those that are nonsingular.

4. Consider the four 3 x 3 linear systems having the same coefficient matrix:

2x\ - 3X 2 + *3 = 2, 2x\ — 3X2 + *3 = 6,

*i + x2 - x3 =-1, X\ 4" x2 - x3 = 4,—Xj + *2 — 3x3 = 0, —Xi + X2 - 3x3 = 5,

2xi - 3x2 + X3 = 0, 2xi - 3x2 + xy = -l ,
X|4* X2 - X3 = 1, X|4- X2 - x3 = 0,

—x[ + x2 - 3X3 = -3, -x, + x2 -3x3 = 0.

a. Solve the linear systems by applying Gaussian elimination to the augmented matrix

2 -3 1 2 6 0 -1
'

1 1 -1 -1 4 1 0

-1 1 -3 0 5 -3 0

b. Solve the linear systems by finding and multiplying by the inverse of

A =
2 -3 1

'

1 1 -1

-1 1 -3

c. Which method requires more operations?

5. Show that the following statements are true or provide counterexamples to show they are not.

a. The product of two symmetric matrices is symmetric.

b. The inverse of a nonsingular symmetric matrix is a nonsingular symmetric matrix.
c. If A and B are n x n matrices, then ( AB )‘ = A' B' .

6. a. Show that the product of two n x n lower triangular matrices is lower triangular.

b. Show that the product of two n x n upper triangular matrices is upper triangular.

c. Show that the inverse of a nonsingular n x n lower triangular matrix is lower triangular.

7. The solution by Cramer’s rule to the linear system

011*1 + 012*2 + <*13*3 =
021*1 4- 022*2 + 023*3 = b2 ,

031*1 + 032*2 + 033*3 = ^3

has

*1 — det
D

b\ 012 0|3

bl 022 023
by 032 033

*2 - det
D

011 ^1 013

021 b2 0 2 3

031 by 033

D ’

Di
D '
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258 C H A P T E R 6 Direct Methods for Solving Linear Systems

and

*3
1 .— det
D

an ax2 bx
a2\ a22 b2

Oil ay2 by

Dy

D '

where

D = det
flll fl12 al3

a2 X an a23

on o32 a33

a. Use Cramer’s rule to find the solution to the linear system

2xi + 3*2 - x3 = 4,

*i — 2*2 + *3 = 6,

*i — 12*2 + 5*3 = 10.

b. Show that the linear system

2*i + 3*2 - *3 = 4,

*i - 2*2 + *3 = 6,

*i - 12*2 + 5*3 = 9

does not have a solution. Compute D\ , D2, and D3.

c. Show that the linear system

2*, + 3*2 - *3 = 4,

*i - 2*2 + *3 = 6,

—*i — 12*2 + 5*3 = 10

has an infinite number of solutions. Compute Dx , D2,and Dy.
d. Suppose that a 3 x 3 linear system with D — 0 has solutions. Explain why we must also have

D\ — D2 = Dy = 0.

8. In a paper entitled “Population Waves," Bemadelli [ Ber] hypothesizes a type of simplified beetle,

which has a natural life span of 3 years. The female of this species has a survival rate of \ in the first

year of life, has a survival rate of|from the second to third years, and gives birth to an average of six
new females before expiring at the end of the third year. A matrix can be used to show the contribution
an individual female beetle makes, in a probabilistic sense, to the female population of the species

by letting atJ in the matrix A = [ai;1 denote the contribution that a single female beetle of age j will
make to the next year’s female population of age i; that is,

A =

0 0 6

J 0 0

0 A 0

a. The contribution that a female beetle makes to the population 2 years hence is determined from
the entries of A:, of 3 years hence from A3, and so on. Construct A2 and A3, and try to make

a general statement about the contribution of a female beetle to the population in n years’ time

for any positive integral value of n.
b. Use your conclusions from part (a) to describe what will occur in future years to a population

of these beetles that initially consists of 6000 female beetles in each of the three age groups.

c. Construct A ~ l and describe its significance regarding the population of this species.
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6.4 Linear Algebra and Matrix Inversion 259

9. The study of food chains is an important topic in the determination of the spread and accumulation
of environmental pollutants in living matter. Suppose that a food chain has three links. The first link
consists of vegetation of typesV\ ,V2 ,... , vn , which provide all the food requirements for herbivores of

species h lt h2 ,... , hm in thesecond link.The third link consists of carnivorousanimalsci , c2, ... ,c*,
which depend entirely on the herbivores in the second link for their food supply. The coordinate ay
of the matrix

0|| 0 J 2 * • * a\m

a2 l a22 • • • 02*

. 0»!1 0
*2 * ’ * 0fl«

represents the total number of plants of type u, eaten by the herbivores in the species hj , whereas

by in

b\\ b\2 • • • b [ k

b2\ b22 • • • bu

. bmi bm2 • • • bmk

describes the number of herbivores in species hi that are devoured by the animals of type cj.
a. Show that the number of plants of type v, that eventually end up in the animals of species Cj is

given by the entry in the ith row and y'th column of the matrix AB.
b. What physical significance is associated with the matrices A

- 1 , B and ( AB )~ ] = B~ lA~ lf!

10. In Section 3.6 we found that the parametric form (x (t), y( t ) ) of the cubic Hermite polynomials

through (x (0), y(0» = (x0, y0) and (*(1), y(l)) = (xlt y,) with guidepoints (*0 + or0, y0 + f io ) and

(*i - Gfi , yi - ^|), respectively, is given by

x(t ) = [2(*o - Xi ) + (a0 + a,)]f 3 + [3(x , - jq,) - cr, - 2a<,]r2 + a0t + x0

and

y<») = [2(>b - y, ) + (A + A )l»3 + [3(y.- y„) - A -2Al»2 + A* + y0 -

The B6zier cubic polynomials have the form

Jc(f ) = [2(xo — *i ) + 3(ao +ai)]f
3 + [3(*i - xo) - 3(ai + 2ao)]f

2 -f 3ao* + xo

and

y (t ) = (2(yo — yi) + 3( f io 4- 0i )]t 3
+ [3(yi — yo) — 3(/? i + 2 f fa ) ]r + 3 fot + yo.

a. Show that the matrix

7 4 4 0

-6 -3 -6 0
A

0 0 3 0
0 0 0 1

maps the Hermite polynomial coefficients onto the Bdzier polynomial coefficients,

b. Determine a matrix B that maps the B6zier polynomial coefficients onto the Hermite polynomial

coefficients.
11. Consider the 2 x 2 linear system (A + i /?)(x + iy) = c + id with complex entries in component form:

(flu + i*ii)(xi + iyi ) + (0 i 2 + ibl2 )(x2 + iy2> = c, + idu
(02 i + ib2 i )( xt + iyi ) + (022 + ib22 )( x2 + i

'y2) = c2 + id2.
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2 6 0 C H A P T E R 6 Direct Methods for Solving Linear Systems

a. Use the properties of complex numbers to convert this system to the equivalent 4 x 4 real linear
system

Real part: Ax - By = c,

imaginary part: Bx + Ay = d .

b. Solve the linear system

(1-2i )(x\ + *>,) + (3 + 2i)(*2 + iy2 ) = 5 + 2/,

(2 + i)(x, +!>,) + (4 + 3/)(X2 + iy2 ) = 4 - i.

6.5 Matrix Factorization

Matrix factorization is another of

the important techniques that

Gauss seems to be the first to

have discovered. It is included in

his two-volume treatise on

celestial mechanics Theoria

motus corporum coelestium in

sectionibus conicis Solem

ambientium, which was

published in 1809.

Gaussian elimination is the principal tool in the direct solution of linear systems of equations,

so it should be no surprise that it appears in other guises. In this section we will see that

the steps used to solve a system of the form Ax = b can be used to factor a matrix. The

factorization is particularly useful when it has the form A = LU ,where L is lower triangular
and U is upper triangular. Although not all matrices have this type of representation, many

do that occur frequently in the application of numerical techniques.
In Section 6.2 we found that Gaussian elimination applied to an arbitrary linear system

Ax = b requires 0 (n3 /3) arithmetic operations to determine x. However, to solve a linear
system that involves an upper-triangular system requires only backward substitution, which

takes 0 (n2 ) operations. The number of operations required to solve a lower-triangular

system is similar.
Suppose that A has been factored into the triangular form A = LU , where L is lower

triangular and U is upper triangular.Then we can easily solve for x using a two-step process.

• First define the temporary vector y = Uxand solve the lower triangular system Ly = bfor
y.Since L is triangular, determining y from this equation requires only 0 ( n2 ) operations.

• Once y is known, the upper triangular system Ux = y requires only an additional 0 ( n 2 )

operations to determine the solution x.

Solving a linear system Ax = b in factored form means that the number of operations

needed to solve the system Ax = b is reduced from 0 {n3 / 3) to 0 ( 2n2 ).

Example 1 Compare the approximate number of operations required to determine the solution to a
linear system using a technique requiring 0 (n3 /3) operations and one requiring 0 (2n2 )

when n = 20, n = 100, and n = 1000.

Solution Table 6.3 gives the results of these calculations.

Table 6.3 „ n3/3 2n 2 Reduction

10 3.3 x 102 2 x 102 40%

100 3.3 x 105 2 x 104 94%

1000 3.3 x 10* 2 x 106 99.4%

As the example illustrates, the reduction factor increases dramatically with the size of
the matrix. Not surprisingly, the reductions from the factorization come at a cost; determin-
ing the specific matrices L and U requires 0(n3

/3) operations. But once the factorization
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6.5 Matrix Factorization 261

is determined, systems involving the matrix A can be solved in this simplified manner for
any number of vectors b.

To obtain the LU factorization of an n x n matrix A:

• use Gaussian elimination to solve a linear system of the form Ax = b.

• if Gaussian elimination can be performed without row interchanges, then

- the upper triangular matrix U is the matrix that results when Gaussian elimination

is complete,

- the lower triangular matrix L has Is on its main diagonal, and each entry below the
main diagonal is the multiplier that was needed to place a zero in that entry when
Gaussian elimination was performed.

The process is outlined in the following example.

Example 2 Determine the LU factorization for matrix

A =

110 3
2 1 -1 1
3 -1 -1 2

-1 2 3 -1

Solution A system involving the matrix A system was considered in the Illustration of
Section 6.2 (see page 230), where we saw that the sequence of operations

( E2 - 2E x )- (E2), (£3- 3Ei) - (£3), (£4 - (-l)Et)- (£4, )

followed by

(£3 — 4£2) — (£3) and (£4 - (-3)£2) - (£4)

converts the system to the triangular system

*1 +*2 + 3*4 = 4,

- x2- *3 - 5x4 = -7,

3X3 + 13X4 = 13,

- 13x4 = -13.
As a consequence, the upper triangular matrix in the factorization is

U =

110 3
0 -1 -1 -5
0 0 3 13
0 0 0 -13

The multipliers used in Gaussian elimination were

m21 = 2, m3i = 3, m4 ] = —1, m32 = 4, m42 = —3, and m43 = 0,

so the lower triangular matrix is

L =

1 0 0 0
2 1 0 0
3 4 10

-1 -3 0 1
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262 C H A P T E R 6 Direct Methods for Solving Linear Systems

Hence the LU factorization of A is

1 1 0 3
'

2 1 -1 1
3 -1 -1 2

-1 2 3 -1
—» o o o ‘

1 1 0 3
‘

2 10 0 o 1 1 1LA
3 4 10 0 0 3 13
1 -3 0 1 0 0 0 -1 3

The next example uses the factorization in the previous to solve a linear system.

Example 3 Use the factorization found in Example 2 to solve the system

*1 + *2 + 3*4 = 8,

2*1 + *2 - *3 + *4 = 7,

3*1 - *2 - *3 + 2*4 = 14,

-*1 + 2*2 + 3*3 - *4 = -7.

Solution To solve

Ax = LUx =

1 0 0 0
' ’

1 1 0 3
'

x\ 8
'

2 1 0 0 0 -1 -1 -5 *2 7
3 4 1 0 0 0 3 13 *3 14

-1 -3 0 1 0 0 0 -13 *4 -7

we first introduce the temporary vector y = Ux. Then b = L{Ux ) = L y. That is.
1 0 0 0

'

y\
"

8
'

2 10 0 yi 7
3 4 10 y$ 14

-1 -3 0 1 . y< . -7

This system is solved for y by a simple forward-substitution process:

y\ = 8;

2yi + yi = 7, so y2 = 7- 2y, = -9;

3yi + 4y2 + 73 = 14, so y3 = 14-3yi - 4y2 = 26;

-y\- 3y2 + >4 = -7, so y4 = -7 + yY + 3y2 =-26.

We then solve Ux = y for x, the solution of the original system; that is.
'

1 1 0 3
'

*i
"

8
'

0 -1 -1 -5 *2 -9
0 0 3 13 *3 26
0 0 0 -13 *4 -26

Using backward substitution we obtain *4 = 2,*3 = 0,*2 = —1,*1 = 3.

The program LUFACT64

performs the LU

Factorization.

Although new matrices L = [ly ] and U = [uy ] are constructed by the program

LUFACT64, the values generated replace the corresponding entries of A that are no
longer needed. Thus, the new matrix has entries a y =l y for each i = 2, 3,..., n and
j = 1, 2, ... ,1 — 1 and a y =u y for each i = 1, 2,...,n and j = i + 1,1 + 2,..., n.

The factorization is particularly useful when a number of linear systems involving A
must be solved because most of the operations, those involving the Gaussian Elimination,

need to be performed only once.
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6.5 Matrix Factorization 263

Illustration

The matrix multiplication PA

permutes rows of A.

The matrix multiplication AP

permutes columns of A.

Example 4

Permutation Matrices

In the previous discussion we assumed that A is such that a linear system of the form
Ax = b can be solved using Gaussian elimination that does not require row interchanges.
From a practical standpoint, this factorization is useful only when row interchanges are
not required to control the round-off error resulting from the use of finite-digit arithmetic.
Although many systems we encounter when using approximation methods are of this type,

factorization modifications must be made when row interchanges are required. We begin
the discussion with the introduction of a class of matrices that are used to rearrange, or
permute, rows of a given matrix.

An n x n permutation matrix P has precisely one entry in each column and each row
whose value is 1, and all of whose other entries are 0.

The matrix

P =
1 0 0
0 0 1
0 1 0

is a 3 x 3 permutation matrix. For any 3 x 3 matrix A, multiplying on the left by P has the
effect of interchanging the second and third rows of A:

10 0
'

011 012 013 011 012 013
0 0 1 021 022 023 = 031 032 033
0 1 0 fl31 a32 033 <22I 022 023

Similarly, multiplying A on the right by P interchanges the second and third columns of A.

There arc two useful properties of permutation matrices that relate to Gaussian elimi-
nation. The first of these was shown in the Illustration.

• If k \ , ... , kn is a permutation of the integers 1, ..., n and the permutation matrix P =
[ p i j ] is defined by

fl, if j = k,,

[0, otherwise,
then

0*1.1 0*1.2 • * * 0* j.n
P A =

0*2.1 0*2.2 * * ' 0*2."

. °kn.1 0*n.2 • * * 0*„ ./i .

The second is

• If P is a permutation matrix, then P ~ [
exists and P"1 = P1.

Determine a factorization in the form A = ( P1 L )U for the matrix

A =

0 0 -1 1
1 1 -1 2

-1 -1 2 0
1 2 0 2
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264 C H A P T E R 6 Direct Methods for Solving Linear Systems

Solution The matrix A does not have an LU factorization becausean = 0. However, using
the row interchange (£ i ) ++ (£2), followed by (£3 + E\ ) - (£3) and (£4 -£1) - (£4),

produces

1 1 -1 2
0 0 -1 1
0 0 1 2 *

0 1 10

Then the row interchange (£2) «-> (£4), followed by (£4 + £3) -> (£4 ), gives the matrix

'

1 1 -1 2 1

0 0 0 3

The permutation matrix associated with the row interchanges (£ j ) (£2) and (£2) «-
(£4) is

and

'

1 0 0 0
' '

0 1 0 0
' '

0 1 0 0
'

0 0 0 1 1 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1 1 0 0 0

PA =

1 1 -1 2
1 2 0 2

-1 -1 2 0
0 0 -1 1

Gaussian elimination is performed on PA using the same operations as on A,except without
the row interchanges. That is, (£2 — £1) - (£2), (£3 + £1) - (£3), followed by
(£4 + £3) - (£4). The nonzero multipliers for PA arc, consequently.

mu = 1» m 3i = —1, and m43 = —1,

and the LU factorization of £A is

PA =

Multiplying by P ~ l = P* produces the factorization

1 0 0 0
1 1 0 0

-10 10
0 0 -1 1

1 1 -1 2
0 1 1 0
0 0 1 2
0 0 0 3

A = P~ l ( LU ) = P' ( LU ) = ( P' L )U =

0 0 -1 1
1 0 0 0

-1 0 1 0
1 1 0 0

LU .

1 1 -1 2
0 1 1 0
0 0 1 2
0 0 0 3

MATLAB has the command lu (A) to obtain an LU factorization of a matrix A in the
form A = PLU , where U is upper triangular, L is lower triangular, and £ is a permutation
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6.5 Matrix Factorization 265

matrix. Notice that the permutation matrix P that MATLAB constructs is the matrix that

we would call P‘ .We apply this command to the matrix in Example 4 by first defining

A = [0 0 -1 1; 1 1 -1 2 ; -1 -1 1 0; 1 2 0 2]

and then calling

[L, U , P] = lu(A )

MATLAB responds with

1 0 0 0
' '

1 1 -1 2
' '

0 0 0 1
'

1 1 0 0 0 1 1 0
, and P =

1 0 0 0

-1 0 1 0
, u = 0 0 1 2 0 0 1 0

0 0 -1 1 0 0 0 3 0 1 0 0

For these matrices L, U , and P , we have A = PL\J .

EXERCISE SET 6 .5

1. Solve the following linear systems.
1 0 0

‘

2 3 -1 X\ 2
2 1 0 0 -2 1 X 2 -1

-1 0 1 0 0 3 . *3 1

2 0 0
'

1 1 1 X\ -1
'

-1 1 0 0 1 2 *2 3
3 2 -1 0 0 1 *3 0

2. Factor the following matrices into the LU decomposition with lit = 1 for all i.
'

2 -1 1
'

1.012 -2.132 3.104
a. 3 3 9 b. -2.132 4.096 -7.013

3 3 5 3.104 -7.013 0.014

‘

2 0 0 0
‘

1 1.5 0 0
c.

0 -3 0.5 0

2 -2 1 1

2.1756 4.0231 -2.1732 5.1967

-4.0231 6.0000 0 1.1973

-1.0000 -5.2107 1.1111 0

6.0235 7.0000 0 -4.1561

3. Obtain factorizations of the form A = P' LU for the following matrices.

a. A =

c. A =

0 2 3
'

1 1 -1

0 -1 1

1 -2 3 0
3 -6 9 3
2 1 4 1
1 -2 2 -2

b. A =

d. A =

1
1
2

1
1
1

2

2
2

-1

-2

-2

-2

1

-1
3
4

3 0
3 1
2 -2

3 -1
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266 C H A P T E R 6 Direct Methods for Solving Linear Systems

4. Suppose A = P' LU , where P is a permutation matrix , L is a lower-triangular matrix with Is on the
diagonal, and U is an upper-triangular matrix.

a. Count the number of operations needed to compute P' LU for a given matrix A.
b. Show that if P contains k row interchanges, then

del P = det P‘ = (-1 )* .

c. Use det A = del P 1 • det L • detU — (-1 )* det U to count the number of operations for deter-

mining det A by factoring.

d. Factor A as P' LU and use this factorization to compute det /1 and to count the number of
operations when

0 2 1 4 -1 3
1 2 -1 3 4 0
0 1 1 -1 2 -1

2 3 -4 2 0 5
1 1 1 3 0 2

-1 -1 2 -1 2 0

5. Use the LU factorization obtained in Exercise 2 to solve the following linear systems.

a. 2x\ - X 2 + *3 = -1,

3*i 4- 3x2 4- 9x3 = 0,

3xi 4- 3x2 4- 5x3 = 4.

c. 2x , = 3,

X|+ 1.5X2 = 4.5,

3X2 4- 0.5X3 = -6.6,

b. 1.012xi - 2.132x2 + 3.104x3 = 1.984,

-2.132x 1 4- 4.096x2 - 7.013x3 = -5.049,

3.104x 1 - 7.013x2 + 0.014x3 = -3.895.

2xj 2X2 + x3 + x4 = 0.8.

d. 2.1756x , + 4.0231x2 - 2.1732X3 + 5.1967x4 = 17.102,

-4.023 lx, + 6.0000x2 + 1.1973*= -6.1593,

— l .OOOOx , - 5.2107x2 + 1.1111x3 = 3.0004,

6.0235xi + 7.0000x2 - 4.1561x4 = 0.0000.

6.6 Techniques for Special Matrices

Although this chapter has been concerned primarily with the effective application of Gauss-
ian elimination for finding the solution to a linear system of equations, many of the results
have wider application. It might be said that Gaussian elimination is the hub about which
the chapter revolves, but the wheel itself is of equal interest and has application in many

forms in the study of numerical methods. In this section we consider some matrices that are
of special types, forms that will be used in other chapters of the book.

Each main diagonal entry in a

strictly diagonally dominant

matrix has a magnitude that is

strictly greater than the sum of

the magnitudes of all the other

entries in that row.

Strict Diagonal Dominance

The n x n matrix A is said to be strictly diagonally dominant when

|a„| > ^2 lfl«yl holds for each i = 1, 2,..., n.
7-1.
j#
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6.6 Techniques for Special Matrices 267

Illustration C o n s i d e r t h e m a t r i c e s

‘

7 2 0
' '

6 4 -3
"

3 5 -1 a n d B = 4 -2 0
0 5 -6 -3 0 1

T h e nonsymmetric matrix A is strictly diagonally dominant because

|7|> |2|+ |0|, |5| > |3|+|-1|, and |-6|> |0|+|5|.

The symmetric matrix B is not strictly diagonally dominant because, for example, in the

first row the absolute value of the diagonal element is |6|< |4|+ 1-3|= 7. It is interesting

to note that A' is not strictly diagonally dominant because the middle row of Ar is (2 5 5],

nor, of course, is Bl because B‘ = B.

Strictly Diagonally Dominant Matrices

A strictly diagonally dominant matrix A has an inverse. Moreover, Gaussian elimination
can be performed on any linear system of the form Ax = b to obtain its unique solution

without row or column interchanges, and the computations are stable with respect to the
growth of round-off error.

Positive Definite Matrices

The name positive definite refers A matrix A is positive definite if it is symmetric and if x'Ax > 0 for every n-dimensional
to the fact that the number x'Ax column vector X ^ 0.
must be positive whenever x ^ o. Using the definition to determine whether a matrix is positive definite can be difficult.

Fortunately, there are more easily verified criteria for identifying members that are and are
not of this important class.

Positive Definite Matrix Properties

If A is an n x n positive definite matrix, then

(i) A has an inverse;

(ii) an > 0 for each i = 1, 2, . . . , n\

(iii) maxi<kj<n \akj\ < max
^*

|a«|;

(iv) (atj )2 < auajj for each i ^ j.

Ourdefinition of positive definite requires the matrix to be symmetric, but not all authors

make this requirement. For example, Golub and Van Loan [GV], a standard reference in
matrix methods, requires only that x'Ax > 0 for each nonzero vector x. Matrices that we
call positive definite are called symmetric positive definite in [GV]. Keep this discrepancy

in mind if you are using material from other sources.
The next result parallels the strictly diagonally dominant result presented previously.
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268 C H A P T E R 6 Direct Methods for Solving Linear Systems

Positive Definite Matrix Equivalences

The following are equivalent for any n x n symmetric matrix A :

(i) A is positive definite.

(ii) Gaussian elimination without row interchanges can be performed on the lin-

ear system Ax = b with all pivot elements positive. (This ensures that the
computations are stable with respect to the growth of round-off error.)

(iii) A can be factored in the form LL\where L is lower triangular with positive
diagonal entries.

(iv) A can be factored in the form LDL\where L is lower triangular with Is on
its diagonal and D is a diagonal matrix with positive diagonal entries.

(v) For each i = 1 , 2, . . . , n , we have

det

an a12

<221 a22

au
<*2i

> 0.

<2, i <2,2 <2„

The next examples illustrate portions of this result. First we will consider (v).

Example 1 Show that the symmetric matrix

is positive definite.

Solution We have

A =
2 -1 0

-1 2 -1
0 -1 2

det[2] = 2 > 0, det

and

det
2 -1 0

-1 2 -1
0 -1 2

2 det

2 -1
-1 2

2 -1

-1 2

= 4 - 1 = 3 > 0,

- (- l ) d e t
-1 -1

0 2

= 2(4 — 1) + (—2 + 0) = 4 > 0,

The program LDLFCT65

performs the LDV
Factorization.

so, by (v), A is positive definite.

The next example illustrates how the LDL' factorization of a positive definite matrix
described in (iv) of the result is formed.

Example 2 Determine the LDL1 factorization of the positive definite matrix

A =
4 -1 1

- 1 4.25 2.75
1 2.75 3.5
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6.6 Techniques for Special Matrices 269

Solution The LDV factorization has Is on the diagonal of the lower triangular matrix L
so we need to have

a\ i <221 <231
'

1 0 0
' '

di 0 0
‘

1 *21 *31
'

<221 <222 <232 = *21 1 0 0 d2 0 0 1 *32

<231 <232 <233 *31 *32 1 0 0 * . 0 0 1

d\ d\li\ <*i *3i

<*i *2i <*2 + </i *2 i </2*32 + </l*21*31

<*1 *31 <*1 *21*31 + <*2*32 <*1 *31 + <*2*32 + **3

Thus

au: 4=d ] => d ] =4, fl2i: - l = <*i*2i => /21 = - 0.25

<231: l = d\ l$\ *31 =0.25, fl22: 4.25 = </2 + d\l\x d2 =4

a$2: 2.75 = </1 /21 /31 + </2 /32 => /32 = 0.75, 033: 3.5 = <*1*3 j + </2/32 + <*3 <*3 = 1.
and we have

1 0 0
‘ ‘

4 0 0
' *

1 -0.25 0.25
'

A = LDL' = -0.25 1 0 0 4 0 0 1 0.75
0.25 0.75 1 0 0 1 0 0 1

Andrc-Louis Cholesky

(1875-1918) was a French

military officer involved in

geodesy and surveying in the

early 1900s. He developed this

factorization method to compute

solutions to least squares

problems.

Any symmetric matrix A for which Gaussian elimination can be applied without row
interchanges can be factored into the form LDL*. In this general case, L is lower triangular

with Is on its diagonal, and D is the diagonal matrix with the Gaussian elimination pivots

on its diagonal. This result is widely applied because symmetric matrices are common and
easily recognized.

The factorization in part (iii) of the positive definite matrix equivalences, that is, A =
LVy is known as Cholesky’s factorization. The next example shows how this is done.

Example 3 Determine the Cholesky LLl factorization of the positive definite matrix

A =
4 -1 1

-1 4.25 2.75
1 2.75 3.5

The program CHOLFC66

performs the LV

Factorization.

Solution The LLl factorization does not necessarily have Is on the diagonal of the lower

triangular matrix L so we need to have

<2ll <221 <231 ^
n

O o *11 *21 *31

fl2 i <222 <232 = *21 *22 0 0 /22 *32

<231 <232 <233 *31 *32 *33 00 *33 .

*?, *11*21 *11*31
“

= *11*21 *21 + *22 *21*31 + *22*32

*11*31 *21 *31 + *22*32 *31 + *32 + *33

Thus

a\\\ 4 = /,, /11 = 2,

<231: 1 = /u /31 => /31 = 0.5,

fl32: 2.75 = /21 /31 + *22*32 =*• *32 = 1*5

<221: — 1 = *11*21 *21 — —0.5

<222: 4.25 = *2, + *22 => *22 = 2

<233: 3.5 = /32, + /f2 + *323 => /33 = 1
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270 C H A P T E R 6 Direct Methods for Solving Linear Systems

The name few a band matrix

comes from the fact that all the

nonzero entries lie in a band that

is centered on the main diagonal.

a n d w e h a v e
'

2 0 0
' '

2 -0.5 0.5
'

II-JII -0.5 2 0 0 2 1.5
0.5 1.5 1 0 0 1

MATLAB commands are available for computing both the L D L1 (ldl) and Cholesky
( LU ) (chol) factorizations. For example, for the matrix A defined by

A = [4 -1 1; -1 4.25 2.75; 1 2.75 3.5]

we have

[L, D] = ldl (A)

giving

L =
1.000000000000000

-0.250000000000000
0.250000000000000

0
1.000000000000000
0.750000000000000

0
0

D =
4 0 0
0 4 0
0 0 1

and

and

L=chol (A)

giving

L =
2.000000000000000 -0.500000000000000 0.500000000000000

0 2.000000000000000 1.500000000000000

0 0 1.000000000000000

Band Matrices

The last special matrices considered are band matrices. In many applications, band matrices

are also strictly diagonally dominant or positive definite. This combination of properties is
very useful.

A n n x « matrix is called a band matrix if integers p and q, with 1 < p,q < w, exist

with the property that aij = 0 whenever p < j — i or q < i — j.The number p describes
the number of diagonals above, and including, the main diagonal on which nonzero entries
may lie. The number q describes the number of diagonals below, and including, the main

diagonal on which nonzero entries may lie. In most applications, p = q and the nonzero
entries are evenly banded about the main diagonal.

The bandwidth of the band matrix is w = p + q - 1, which tells us how many of the

diagonals can contain nonzero entries. The 1 is subtracted from the sum of p and q because

both of these numbers count the main diagonal.
For example, the matrix

'

72 1 0
'

3 5 -3 -2
0 4 6 -1

° ° 5 8

is a band matrix with p = 3 and q = 2, so it has bandwidth 3 4- 2 — 1 = 4.
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6.6 Techniques for Special Matrices 271

Tridiagonal Matrices

Band matrices concentrate all their nonzero entries about the diagonal. Two special cases
of band matrices that occur often have p = q = 2 and p = q = 4. Matrices of bandwidth

3 that occur when p = q = 2 are called tridiagonal because they have the form

A =

0

flu a12 0*.* 0

a2\ a22 <*23

P. 032. a33. ^34.

"
* •. ’ *•, ‘ &n— l,/i

* • •0 ^n - l.n

The program CRTRLS67

performs Crout

Factorization.

Tridiagonal matrices will appear in Chapter 11 in connection with thestudy of piecewise

linear approximations to boundary-value problems. The case of p = q = 4 will also be
used in that chapter for the solution of boundary-value problems, when the approximating

functions assume the form of cubic splines.
The factorization methods can be simplified considerably in the case of band matrices

because a large number of zeros appear in regular patterns. Of particular interest is the Crout
factorization, where A = LU with U having all Is on its diagonal.

Crout factorization is illustrated in the following example.

Example 4 Determine the Crout factorization of the symmetric tridiagonal matrix

'

2 -1 0 0
'

-1 2 -1 0
0 -1 2 -1 *

0 0 -1 2

Solution The LU factorization of A has the form

an 0 0 0 /11 0 0 0
'

1 012 0 0
<*21 <*22 <*23 0 00fN 0 1 023 0

0 <232 033 aM
0 0 043 044

0-3on
nr

J
?

°
O
O

0 0 1 034
0 0 0 1 _

/ ll /11 M 12 0 0
/21 ^22 + ^21^12 ^22*̂ 23 0
0 /32 /33 + ^32«23 /33M34

0 0 /43 /44 + /43M34

Thus

0»: 2 = 1.. ==> 111 = 2, 012: — l = / l l 0 1 2 => 0 1 2 =
<*21: 1 II KT"i 111 «22

* 2 = /22 + ^21^12 =>• /2 2 =|»

<*23* — 1 = /22^23 => u23 = — 3 » f l32* — 1 = /32 => /32 = —1.
033: 2 = /33 + /32W 23 = /33 = 034: — 1 = /33034 => «34 = — 4

,

043: 1 IIS" 115" 111 044: 2 = /44 4- /43W34 => /44 =|-

Copyright 2012 Cengagc Learnin*. AI Right* Reversed May r*x be copied, canned, o* daplicated.» whole o t m pan. Doc to electronic rtghtv.vomc third pony content may be supposed ftem the eBook and/or cCh<xcn» l . Editorial roiew h*>

deemed Cut any vuppicwed content dee*not materialy alTect the overall learning experience. C'cngagc Learning rexrvev the right lo renxyve additional conceal at any time i i vubveqjrni right* roiriciionv require It



272 C H A P T E R 6 Direct Methods for Solving Linear Systems

This gives the Crout factorization

'

2 -1 0 0
'

K
> O o o '

1 -1 0 0
'

-1 2 -1 0 -1 \ 0 0 0 1 0
0 -1 2 -1 0 -1 5 0 0 0 1 -1

0 0 -1 2 0 o -1 I . 0 0 0 1

The next example shows how a linear system is solved once the Crout factorization is
known.

Example 5 Use this Crout factorization found in Example 4 to solve the linear system

2x\ - x2 = 1,

-X\ +1x2 - *3 = 0,

- X 2 + 2x3 - *4 = 0,

- X3 + 2*4 = 1.

Solution First we introduce a temporary vector y = Ux and use forward substitution to

solve the system

This gives

Ly =

2 0

-1 I
0 -1
0 0

0 0 '

0 0
>1

’ ‘
1

'

>2 0

>3 0

. >4 . 1

2y\ = 1

3-lyi +
2

yi = 0

4
y2 4" -ys = o

“>3 + “>4 = 1
4

* = 2’

1

2

1
>2 =

>3 =

>4 = 1,

3

1

4 ’

"'- (iii1) •

Then using backward substitution to solve Ux = y,

Ux =

'

1 1
2 0 0

'

*1
'

1

Efcl—Wl-K>l— 1

0
0

1
0

2
3
1

O
e
*i
1

s»
1

*2

*3
=

0 0 0 1 . *4 . 1
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6.6 Techniques for Special Matrices 273

gives

*4 = 1,

3 1
*3 - -*4 = T => *3 = 1,

4 4

2 1
_

.
^-

3^ = 3 =* 12 = Jl

1 1
_

.
2 2

and x = (1, 1, 1, 1)'.

The tridiagonal factorization can be applied whenever /, ^ 0 for each i = 1, 2 n.
Two conditions, either of which ensure that this is true, are that the coefficient matrix of the

system is positive definite or that it is strictly diagonally dominant. An additional condition
that ensures this method can be applied is as follows.

N o n s i n g u l a r T r i d i a g o n a l M a t r i c e s

Suppose that A is tridiagonal witha,tl
_

i ^ 0 and a, ,+i / 0 for each / = 2,3, ... , n —1.
If Mill > M12 I * Mm. I > Kn-il, and \au \ > |a,

#

,_
i|+ k.,+i| for each 1 = 2, 3

#i — l, then A is nonsingular, and the values of /, arc nonzero for each i = 1, 2,

E X E R C I S E S E T 6 . 6

1.

2.

Determine which of the following matrices are (i) symmetric, (ii) singular, (iii) strictly diagonally

dominant, and (iv) positive definite.

a.

c.

e.

R-

‘

2 1 0
'

0 3 0
1 0 4

'

4 2 6
'

3 0 7

-2 -1 -3
'

4 0 0 0
6 7 0 0
9 1 1 1 0
5 4 1 1

b.

d.

f.

h.

-2 1
1 “3

'

2 1 0
'

0 3 2
1 2 4

'

2 -1 0
‘

-1 4 2
0 2 2

'

2 3 1 2
'

-2 4 -1 5
3 7 1 . 5 1
6 -9 3 7

Find a factorizaton of the form A = LDV for the following symmetric matrices:

2 -1 0
' '

4 1 1 1
'

a. A = -1 2 -1
h A

1 3 -1 1
0 -1 2

D. /i — 1 -1 2 0
1 1 0 2

'

6 2 1 -1
2 4 1 0
1 1 4 -1

-1 0 -1 3

4 1 -1 0
1 3 -1 0

d. A =-1 -1 5 2
0 0 2 4
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274 C H A P T E R 6 Direct Methods for Solving Linear Systems

3. Find a factorization of the form A = LL‘ for the matrices in Exercise 2.

4.

5.

6.

7.

8.

Use the factorization in Exercise 2 to solve the following linear systems.

a. 2* i — x2 = 3,

—X 1 -f 2X 2 — *3 = —3,

—X2 + 2X3 = 1.

c. 4* i 4- X 2 — *3 = 7,

X \ 4- 3X2 - X3 = 8,

xi - x2 + 5x3 + 2X4 = -4,

2x3 -I- 4x4 = 6.

b. 4xj 4- x2 4- x3 4- x4 = 0.65,

xi + 3x2 — x3 -{ x4 = 0.05,

X| — X2 4- 2X3 = 0,

Xi 4- x2 4- 2X4 = 0.5.

d. 6xi 4- 2x2 4- x3 — x4 = 0,

2xi 4- 4X2 4- X3 = 7,

x\ 4- x2 4- 4x3 - x4 = -1 ,

—xi — x3 4- 3X4 = —2.

Use Crout factorization for tridiagonal systems to solve the following linear systems.

a. Xj — x2 = 0,

- 2x, 4- 4X2 - 2X3 =- 1,

— x2 4" 2x3 ~ 1.5.

c. 2xj — x2 = 3,

- x , 4- 2x2 - x3 = -3,

— x2 4- 2X3 = 1.

b. 3xj 4- x2 = — 1 ,

2x , 4- 4X2 4- x3 = 7,

2X2 4- 5x3 = 9.

d. 0.5xi 4- 0.25X2 = 0.35,

0.35x| 4- 0.8X2 + 0.4X3 = 0.77,

0.25X2 4- x3 4- 0.5X4 = —0.5,

x3 - 2x4 = -2.25.

Let A be the 10 x 10 tridiagonal matrix given by a„ = 2, a , j +1 = ou-i = — 1, for each i = 2, . . . , 9,

and a n = ato.10 = 2. a i 2 = aio.9 = — 1 - Let b be the 10-dimensional column vector given by

bx — b\Q — 1 and bt = 0 for each i = 2, 3, . . . , 9. Solve Ax = b using the Crout factorization for
tridiagonal systems.

Suppose that A and B are positive definite n x n matrices.

a. Must — A also be positive definite?

b. Must A' also be positive definite?

c. Must A 4- B also be positive definite?

d. Must A; also be positive definite?

e. Must A - B also be positive definite?

Let

A =
1 0 -1

'

0 1 1

-1 1 a

Find all values of a for which

a. A is singular.

b. A is strictly diagonally dominant.

c. A is symmetric.

d. A is positive definite.

9. Let

A =
a 1 0

P 2 1
0 1 2

Find all values of a and p for which

a. A is singular.

b. A is strictly diagonally dominant.
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6.7 Survey of Methods and Software 275

c. A is symmetric.

d. A is positive definite.

10. Suppose A and B commute; that is, AB = BA. Must A' and B also commute?

11. In a paper by Dorn and Burdick [DoBJ, it is reported that the average wing length that resulted
from mating three mutant varieties of fruit flies ( Drosophila melanogaster ) can be expressed in the

symmetric matrix form

1.59 1.69 2.13
1.69 1.31 1.72
2.13 1.72 1.85

where atJ denotes the average wing length of an offspring resulting from the mating of a male of type

i with a female of type j.
a. What physical significance is associated with the symmetry of this matrix?

b. Is this matrix positive definite? If so, prove it; if not, find a nonzero vector x for which xMx < 0.

6.7 Survey of Methods and Software

In this chapter wc have looked at direct methods for solving linear systems. A linear system

consists of n equations in n unknowns expressed in matrix notation as Ax = b. These

techniques use a finite sequence of arithmetic operations to determine the exact solution of
the system subject only to round-off error. Wc found that the linear system Ax = b has a
unique solution if and only if A-1 exists, which is equivalent to det A ^ 0. The solution of

the linear system is the vector x = A
_

1 b.
Pivoting techniques were introduced to minimize the effects of round-off error, which

can dominate the solution when using direct methods. We studied partial pivoting, scaled

partial pivoting, and total pivoting. Wc recommend the partial or scaled partial pivoting
methods for most problems because these decrease the effects of round-off error without

adding much extra computation.Total pivoting should be used if round-off error is suspected
to be large. In Section 7.6 we will see some procedures for estimating this round-off error.

Gaussian elimination was shown to yield a factorization of the matrix A into LU , where
L is lower triangular with Is on the diagonal and U is upper triangular. (This process is
sometimes called Doolittle’s factorization.) Not all nonsingular matrices can be factored this
way, but a permutation of the rows will always give a factorization of the form PA = LU ,

where P is the permutation matrix used to rearrange the rows of A . The advantage of the

factorization is that the work is reduced when solving linear systems Ax = b with the same
coefficient matrix A and different vectors b.

Factorizations take a simpler form when the matrix A is positive definite. For example,

the Cholesky factorization has the form A = LLl, where L is lower triangular. A symmetric

matrix that has an LU factorization can also be factored in the form A = LDL\where
D is diagonal and L is lower triangular with Is on the diagonal. With these factorizations,
manipulations involving A can be simplified. If A is tridiagonal, the LU factorization takes a
particularly simple form, with U having Is on the main diagonal and its only other nonzero
entries on the diagonal immediately above. In addition, L has its only nonzero entries

on the main diagonal and on the diagonal immediately below. Another important matrix
factorization technique is the singular value decomposition considered in Section 9.6.

The direct methods are the methods of choice for most linear systems. For tridiagonal,

banded, and positive definite matrices, the special methods are recommended. For the
general case, Gaussian elimination or LU factorization methods, which allow pivoting, are
recommended. In these cases, the effects of round-off error should be monitored. In Section

7.6 we discuss estimating errors in direct methods.
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