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9.  Suppose that

20,4+ x4+ Ixs=1
4x;+6x24+ Bra=35
6x) +axa+ 10x3 =5

with || < 10. For which of the following values of @ will there be no row interchange required when
solving this system using scaled partial pivoting?
a a=6 b. =9 e a=-3

t 6.4 Linear Algebra and Matrix Inversion

Early in this chapter we illustrated the convenience of matrix notation for the study of
linear systems of equations, but there is a wealth of additional material in linear algebra
that finds application in the study of approximation techniques. In this section we introduce
some basic notation and results that are needed for both theory and application. All the
topics discussed here should be familiar to anyone who has studied matrix theory at the
undergraduate level. This section could then be omitted, but it is advisable to read the section
to see the results from linear algebra that will be frequently called upon for service, and to
be aware of the notation being used.

Two matrices A and B are equal if both are of the same size, say, n x m, and if a;; = b;;
foreachi =1,2,...,nand j=1,2,...,m.

This definition means, for example, that

[2 -1 7] 4 _f ?
3 1 0 7 0
because they differ in dimension.

Matrix Arithmetic

If A and B are n x m matrices and X is a real number, then

® the sum of A and B, denoted A + B, is the n x m matrix whose entries are a;; + b;;,

e the scalar product of A and A, denoted A A, is the n x m matrix whose entries are Aaj;.

Example 1 Determine A + B and LA when

2. =1 7 42 -8
a=[217] 5a[82 2] wirena
Solution 'We have
248 143 T8 i
A+B—[3+0 1+1 0+6}—[3 2 6]‘

and

|20 2D 2 _[4 2 -14
T =23 =2(1) -=20) | | -6 =2 0
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248 CHAPTER 6 = Direct Methods for Salving Linear Systems

Matrix-Matrix Products

If Ais ann x m matrix and B is an m x p matrix,

e the matrix product of A and B, denoted AB, isan n x p matrix C whose entries ¢;; are
given by

m
Cij = Eﬂikbkj =apbij+anbyj + - + Aimbmj,
k=1

foreachi =1,2,...nand j =1,2,...,p.

The computation of ¢;; can be viewed as the multiplication of the entries of the ith row
of A with corresponding entries in the jth column of B, followed by a summation; that is,

blj

bgj
lai, Gias o cvaiml | | = o]

bpj
where

L
cij = anbyj +anbaj ++ o + Qimbamj = Zaikbkj-
k=1

This explains why the number of columns of A must equal the number of rows of B for the
product AB to be defined.

The following example illustrates a common matrix multiplying operation in the case
when the matrix on the right of the multiplication has only one column, that is, itis a column
vector.

6 4 g

Solution Because A has dimension 3 x 2 and b has dimension 2 x 1, the product is defined
and is 3 x 1, that is, a vector with three rows. These are

3IA+2-D=17 DA +1U-1)=—-4, and 6(3)+4(-1)=14.

SR CRCITE

In the next example we consider product operations in various situations.

3 2
Example 2 Determine the product Abif A = [—1 1 ] and b= [ . ]
So

Example 3 Determine all possible products of the matrices

)
A=| -1 1|, B=[§ } _é] C=| -
1 4

2
1
1
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The term diagonal applied to a
matrix refers to the entries in the
diagonal that run from the top left
entry to the bottom right entry.

llustration

6.4 Linear Algebra and Matrix Inversion 249

Solution The sizes of the matrices are

A:3x2, B:2x%x3, C:3x4, and D:2x2.

The products that can be defined, and their dimensions, are:
AB:3x3, BA:2x2, AD:3x2, BC:2x4, DB:2x%x3, and DD:2x2.

These products are
) 5 A T | 4 1 7 -5
AB = I 8 3, BA:[“} 15:[, AD=| 1 g |,
14 5 7 9 -5
-3 -1 0
0 -1/
]

2 403 -1 0
BC:[? 8 6 4]' DB:[ —4

11 ] and DD=[
Square Matrices

We have some special names and notation for matrices with the same number of rows and
columns.

® A square matrix has the same number of rows as columns.

e A diagonal matrix is a square matrix whose only nonzero elements are along the main
diagonal. So if D = [d;;] is a diagonal matrix, then d;; = 0 wheneveri  j.

® The identity matrix of order n, I, = [8;;], is a diagonal matrix with 1s along the diagonal.
That is,

1 Qesereens 0
0. 1. = &

= | £ Mgt
s e

Oriviiaes b |

When the size of [, is clear, this matrix is generally written simply as /. For example,
the identity matrix of order three is

If Aisany n x n matrix and [ = [;, then Al = [A = A.

Consider the identity matrix of order three,
1 0
01
00

L=

If A isany 3 x 3 matrix, then

aj ap aps 1 00 ajp ap ap
Ali=| an an an 01 0|=]|an an an | =A. a
ay ayn an 001 ay an an

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
deemed S Ry supprEssed content dees ool maxtlaly affoa the overll leaming expericnce. Cengage Loaming reserves the ripht i remove additinnal contee & any 1time f subrseguent rights restrictons rogquire [k



250

A triangular matrix is one that
has all its nonzero entries either
on and above (upper) or on and
below (lower) the main diagonal.
A matrix is diagonal precisely
when it is both upper- and
lower-triangular,

The word singular means
something that deviates from the
ordinary. Hence a singular matrix
does not have an inverse.

Example 4

CHAPTER 6 = Direct Methods for Salving Linear Systems

An n x n upper-triangular matrix U = [u;;] has all its nonzero entries on or above
the main diagonal, that is, foreach j = 1,2, ..., n, the entries

=0, foreachi=j+1,j+2,...,n

In a similar manner, a lower-triangular matrix L = [/;;] has all its nonzero entries on or
below the main diagonal, that is, for each j = 1, 2, ..., n, the entries

lll'j - D!

(A diagonal matrix is both upper and lower triangular.)

In Example 3 we found that, in general, AB # BA, even when both products are
defined. However, the other arithmetic properties associated with multiplication do hold.
For example, when A, B, and C are matrices of the appropriate size and A is a scalar, we
have

foreachi=1,2,...,j—1

e A(BC)=(AB)C,

® A(B+C)=AB+ AC,and
® A(AB) = (LA)B = A(AB).
Inverse Matrices

Certain n x n matrices have the property that another n x n matrix, which we will denote
A~!, exists with AA~! = A~'A = [. In this case A is said to be nonsingular, or invertible,
and the matrix A~ is called the inverse of A. A matrix without an inverse is called singular,
or noninvertible.

Let
1 2 -1 =& 5 =3
A=| 21 o and  B=| & -} 2
11 2 A
3 3 3

Show that B = A~!, and that the solution to the linear system described by

x+2x— n=2,
214+ x =3,
=-x1+ x2+2n =4

is given by the entries in Bb, where b is the column vector with entries 2, 3, and 4.

= In 1§y )
. = 0 l 0 = fj-
- 001

In a similar manner, BA = I3, so A and B are both nonsingular with 8 = A-1 and
A= B
Now convert the given linear system to the matrix equation

% AT lFwm 2
21 0ll=sl=lsl,
-1 &t 2] |m 4

Solution  First note that

1
AB = 2
o |

el 2

=1
0
2

[P -TF -
Ll e DL
L [ DD A et
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6.4 Linear Algebra and Matrix Inversion 251

and multiply both sides by B, the inverse of A. Then we have

B(Ax) = Bb,
with
€ & < 1 2 -1
B(Ax) = (BA)x = s -1 2 2 1 0 X=x
=3 3 3 -11 2
G 9 9
and
2 5 1 7
5 3 T3 2 9
Bbh = R 3= 4%
1 1 1 - ]
3 3 3 3

This implies that x = Bb and gives the solution x; =7/9, x; = 13/9,and x3 =5/3. m

The reason for introducing this matrix operation at this time is that the linear system

anx; +apx;+ - +awxs = by,

anXx; +apx; + -+ +amxy = b,

81X + anaXa + o0+ QuuXy = by,

can be viewed as the matrix equation Ax = b, where

an Gz - G X1 by

@ Gn v G x2 by
A i . . . P X= . ¥ and h :

Qnl Gn2 - gy Xn by

If A is a nonsingular matrix, then the solution x to the linear system Ax = b is given
by

Xx=A"'(Ax) = A"'b.
In general, however, it is more difficult to determine A~ than it is to solve the system
Ax = b because the number of operations involved in determining A" is larger. Even so,

it is useful from a conceptual standpoint to describe a method for determining the inverse
of a matrix.

lllustration  To determine the inverse of the matrix

A=

— 3 —
—— b2

|
L =
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252 CHAPTER 6 = Direct Methods for Salving Linear Systems

let us first consider the product AB, where B is an arbitrary 3 x 3 matrix.

1 2 -1 by by b3
AB = 2 0 by by by
-1 1T 2 by, by b3y
biy+2by —byy  bia+2bn—by by +2bpn—bsy
= 2byy + by 2bys + by 2b13 + by
—b11 +by1 +2bsy —bip+bn+2byy —biz+ by +2by

If B = A"!, then AB = I, so we must have

biy +2by — by =1, bz 4 2by — by =0,
2byy + by =0, 2bia+ bn =1,
—bu + by +2b3;1 =0, —bp+ byp+ 23 =0,

bz +2by3— b33 =0
2bi3+ b =0
—biz+ byn+2bn=1

Notice that the coefficients in each of the systems of equations are the same; the only change
in the systems occurs on the right side of the equations. As a consequence, the computations
can be performed on the larger augmented matrix, which is formed by combining the
matrices for each of the systems

1 2 <31:%1 00
21 0:0 1 0f
=1 i Z3'0 & 1
First, performing (E; — 2E,) — (E;) and (E; + E;) — (E;) gives

.. -

1, 2zl 10
0 =3 2.2 =& 1 "0,
[0 3. Iz 10
Next, performing (E3 + E3) — (E3) produces

1 108
0 —3 2 =3 10,
0 o0 3:-111

Backward substitution is performed on each of the three augmented matrices,

1 2 -1: 1]t 2 -1:0 1 2 -1:0
0 -3 2:-2/,]l0 -3 2:1f,|Jo -3 2:o0f,
0 0 3:-1 [0 o 3:i1f o 0 3:i1

to eventually give

bi=-3 bu=3} by =3,

by=35, bn=-}, and bn=1}

bu=—1 b2=1, b=}

These are the entries of A~':
-2 i -4 <2 § -1
= 4ol 2 |=l e a 2. (63)

i1 3 9l <3 3 13
G

O
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64 Linear Algebra and Matrix Inversion

Transpose of a Matrix

e The transpose of ann x m matrix A = [a;;] is the m x n matrix A" = [a].

® A gquare matrix A is symmetricif A = A"

lllustration The matrices

72 0 6 4 -3
A=|3 5 -1, 5=[§ b _;"] c=| 4 =2 o0
05 —6 =5 @ 1

have transposes

3 0 2 3 6 4 -3
A= 5 5|, B=|4 -5 |, C'= 4 -2 0.
-1 -6 7 -1 -3 0 1

The matrix C is symmetric because C' = C. The matrices A and B are not symmetric. [J

(=T SIEN ]

The transpose notation is convenient for expressing column vectors in a more compact
manner. Because the transpose of a column vector is a row vector,

X1
X2
the column vector x = ; is generally written in textas  x = (x;,x3, ..., %,)".

Xn

The following operations involving the transpose of a matrix hold whenever the oper-
ation is possible.

Transpose Facts

@ @)=4. @) (A+B)=A+B.
(i) (4B) =B'A". @v) A~ exists, (A™") = (A"

Matrix Determinants

The determinant of a square matrix is a number that can be useful in determining the
existence and uniqueness of solutions to linear systems. We will denote the determinant of
a matrix A by det A, but it is also common to use the notation |A|.
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254 CHAPTER 6 = Direct Methods for Salving Linear Systems

Determinant of a Matrix
(i) IfA=[alisal x 1 matrix, thendetA = a.
(ii) If A is an n x n matrix, the minor M;; is the determinant of the (n — 1) x
(n — 1) submatrix of A obtained by deleting the ith row and jth column of
the matrix A,
Then the determinant of A is given either by
detA = Z(-n*'ﬂauuf, foranyi=1,2,...,n,
J=1
or by
"
detA =Y (~1)*Ja;My; foranyj=1,2,...,n.
i=1
The notion of a determinant To calculate the determinant of a general n x n matrix by expanding by minors requires

appeared independently in 1683 O(n!) multiplications/divisions and additions/subtractions. Even for relatively small values
in Japan and Europe, although of n, the number of calculations becomes unwieldy. Fortunately, the precise value of the
neither Takakazy Seki Kowa determinant is seldom needed, and there are efficient ways to approximate its value.
(1642-1108) nor Clogtrind Although it appears that there are 2» different definitions of det A, depending on which
mﬁ:ﬁ:ﬂiﬁiﬁiﬁaﬁ row or column is chosen, all definitions give the same numerical result. The flexibility in the
* definition is used in the following example. It is most convenient to compute det A across
the row or down the column with the most zeros.

Example 5 Find the determinant of the matrix

2 -1 & 0
4 270
il
6 —6 8 0

using the row or column with the most zero entries.

Solution 'To compute det A, it is easiest to use the fourth column because three of its entries
are (.

det A = ara(—1)*Mya + a2 (—1)°May + asa(—1)" Mg + aus(—1)* Mg = —5Mas.

Eliminating the third row and the fourth column of A and expanding the resulting 3 x 3
matrix by its first row gives

2 =1 3
detA= —5det| 4 -2 7
6 —6 8

2 7 4 7 4 -2
~sfaaa[ 2 1] -cva[ 4 T]esa] 2]}

— 5 [2(—16 + 42) + (32 — 42) + 3(=24 + 12)] = —30. .

o b

The following properties of determinants are useful in relating linear systems and
Gaussian elimination to determinants.
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64 Linear Algebra and Matrix Inversion 255

Determinant Facts
Suppose A is an n X n matrix:
(i) If any row or column of A has only zero entries, then det A = 0.
(ii) If A is obtained from A by the operation (E;) <> (E}), with i # k, then
detA = —det A.
(iii) If A has two rows or two columns the same, then det A = 0.
(iv) If A is obtained from A by the operation (AE;) — (E;), thendet A = A det A.
(v) If A is obtained from A by the operation (E; + AE;) — (E;) withi # k,
then det A = det A.
(vi) If Bisalso an n x n matrix, then det AB = det A - det B.
(vii) detA’ =det A.
(viii) IfA-! exists, then detA-! = ﬁ.
(ix) If A is an upper triangular, lower triangular, or diagonal matrix, then
detA =ay -ay---ay,.
Example 6§ Compute the determinant of the matrix
2 1 -1 1
1 I O 3
A=l t 2 B d
3 -1 -1 2
using Determinant Facts (ii), (iv), (v), and (ix), and doing the computations in MATLAB.
Solution Matrix A is defined in MATLAB by
A=[21-11;1103; -123-1; 3-1-12]
We will use the operations in Table 6.2 to first place the matrix in upper-triangular form.
Then we can use the final determinant fact to contain the result from the entries on the
diagonal. We have used some of these steps to illustrate the commands in MATLAB. For
example, the first operation would not normally be performed when placing the matrix in
upper-triangular form.
Table62 (operaion MATLAB Command Effect
1E, » E, A1(1,:) = A(1,:)/2 detAl = }detA
E;—E; = E;  A2(2,:)=A1(2,:)~-A1(1,:) det A2 =detAl = }detA
E;+ E, = E4 A3(3,:)=42(3,:)+A2(1,:) det A3 =det A2 = gdcul
Ey—3E, — E; A4(4,:)=A3(4,:)-3%A3(1,:) det A4 =det A3 = [ detA
2E, —» E; A5(2,:)=2%A4(2,:) det AS = 2det A4 = det A
E; — gEz — E:  A6(3,:)=A5(3,:)-2.5%A5(2,:) det A6 =det AS =det A
Es+3E; — Ex  AT(4,:)=A6(4,:)+2.5%A6(2,:) det A7 = det A6 = det A
E; < Es B=AT(3,:),A8(3,:)=A7(4,:),A8(4,:)=B detA8 =—det AT = —detA
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256 CHAPTER 6 = Direct Methods for Salving Linear Systems

After these operations are performed, the matrix will have the form
TR
0 1 1 5
i 00 3 13
0 0 0 =13
By (ix),det AB =1.1-3(—13) = -39, sodet A = — det AB = 39. |

The key result relating nonsingularity, Gaussian elimination, linear systems, and de-
terminants is that the following statements are equivalent.

Equivalent Statements about an n x n Matrix A
(i) The equation Ax = 0 has the unique solution x = 0.

(ii) The system Ax = b has a unique solution for any n-dimensional column
vector b.

(iii) The matrix A is nonsingular; that is, A~! exists.
(v) det A #0.

(v) Gaussian elimination with row interchanges can be performed on the system
Ax = b for any n-dimensional column vector b to find the unique solution x.

MATLAB has numerous commands that can directly perform operations on matrices.
For example, for matrices A and B and scalar a, when the operations are possible, the
following MATLAB commands can be used.

® Toadd A and B: A+B e To multiply A and B: A*B
® To multiply A by a: a*A e To obtain the transpose of A: A’
® To obtain the inverse of A: inv (A) ® To find the determinant of A: det (4)

EXERCISE SET 64

1.  Compute the following matrix products.

1 00 I 0B 1 00 1 -1
a | -1 1 0f-]2 20 b. 2. 1 0i-l1o 1
2 .31 I -1 1 -2 =1 1 0 0

3

0

0

1 00 1 0 0 2 -1 4 -
[ o 1 0]j- 2 10 d. 0 -1 2]-
0 -2 1 -3 0 1 6 0 3

2. Forthe following matrices:
i.  Find the transpose of the matrix.
ii. Determine which matrices are nonsingular and compute their inverses.

4 2 6 [ 0
a. 3 0 7 b. 2 1 =1
-2 -1 =3 3 1 1
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6.4 Linear Algebra and Matrix Inversion 257

400 11 -1 1
000 " 1 2 =4 -2
[0 0 3 * 21 L 35

| -1 0 2 —4
(4 0 0 0 2 o1 2
6 7 00 i |2 1032
9 11 1 0 2 -1 31
|5 4 11 |3 -1 4 3

3.  Compute the determinants of the matrices in Exercise 2 and the determinants of the inverse matrices
of those that are nonsingular.

4.  Consider the four 3 x 3 linear systems having the same coefficient matrix:

b,

.

20—+ x3=2, 20— 354+ x3=6,

4+ xm— xnn=-1, n+ - =4
=X} =+ X3 =3x3=0, —xi4+ x—=3n=35,
2 -3+ x3=0, 2 — 34+ n=-1,
Xi+ x— xa=1, X1+ = x3=0,

—x;+ 1 —3x3=-3, —x;+ x—3x=0
Solve the linear systems by applying Gaussian elimination to the augmented matrix
2 -3 1 : 26 0 -1
1 1 -1: -1 4 1 9of
e | 1 -3: 05 =3 0

Solve the linear systems by finding and multiplying by the inverse of

2 -3 1
A= 1 1 -1 |.
-1 1 -3

Which method requires more operations?

5.  Show that the following statements are true or provide counterexamples to show they are not.

FeprEPR

The product of two symmetric matrices is symmetric.

The inverse of a nonsingular symmetric matrix is a nonsingular symmetric matrix.

If A and B are n x n matrices, then (AB)' = A'B".

Show that the product of two n x n lower triangular matrices is lower triangular.

Show that the product of twon x n upper triangular matrices is upper triangular.

Show that the inverse of a nonsingular n x n lower triangular matrix is lower triangular.

7.  The solution by Cramer’s rule to the linear system

ay Xy + apX; + aiaxs = by,
@31X) + GnXz + anxy = b;.
31X + aznxs + @33x3 = by

1 by ap ap D
xn= E det bz dy; dn = 31‘
by ap an
ay b oap
1 D
=gt o b oo |= _D%’
ay by ay
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258 CHAPTER 6 = Direct Methods for Salving Linear Systems

and

ag  ap b
X3 = ;—)del [ ay an b ] = Da‘

ay an by

where

4y dpy dn
D=det| a3y, an an =

a3 a4y 43

a. Use Cramer’s rule to find the solution to the linear system

204+ 3x— x3=4,
X — 2%+ X3=06,
x — 12x; + 5x; = 10.

b.  Show that the linear system

4+ In- =4,
X = 24+ x3=6,
—x; = 120, + 513 =9

does not have a solution. Compute D, Dy, and Ds.
¢.  Show that the linear system

26+ 3x;— x;=4,
xn= 2o+ x3=6
—] - IZI; +5x;=10

has an infinite number of solutions. Compute D, D,, and D;.

d. Suppose that a 3 x 3 linear system with D = 0 has solutions. Explain why we must also have
Dy=Dy=Dy=0.

8.  In a paper entitled “Population Waves,” Bernadelli [Ber] hypothesizes a type of simplified beetle,
which has a natural life span of 3 years. The female of this species has a survival rate of ; in the first
year of life, has a suwivalmecf% from the second to third years, and gives birth to an average of six
new femnales before expiring at the end of the third year. A matrix can be used to show the contribution
an individual female beetle makes, in a probabilistic sense, to the female population of the species
by letting a;; in the matrix A = [a;;] denote the contribution that a single female beetle of age j will
make to the next year’s female population of age i; that is,

00 6
A=|3 0 0
0} o0

a. The contribution that a female beetle makes to the population 2 years hence is determined from
the entries of A%, of 3 years hence from A”, and so on. Construct A* and A, and try to make
a general statement about the contribution of a female beetle to the population in n years’ time
for any positive integral value of n.

b.  Use your conclusions from part (a) to describe what will occur in future years to a population
of these beetles that initially consists of 6000 female beetles in each of the three age groups.

¢. Construct A~' and describe its significance regarding the population of this species.
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6.4 Linear Algebra and Matrix Inversion 259

9.  The study of food chains is an important topic in the determination of the spread and accumulation
of envircnmental pollutants in living matter. Suppose that a food chain has three links. The first link
consists of vegetation of types vy, vs, . .. , v, which provide all the food requirements for herbivores of
specieshy, ha, ... , h, inthe second link. The third link consists of carnivorous animals ¢y, €3, ... , €i,
which depend entirely on the herbivores in the second link for their food supply. The coordinate a;;

of the matrix
a4 Qim
dy an Ay
A= pr
Qny  Any A

represents the total number of plants of type v; eaten by the herbivores in the species h;, whereas
by in

bn ba - by

by bp e by

by bm;‘. von By

B=

describes the number of herbivores in species h; that are devoured by the animals of type c;.
a.  Show that the number of plants of type v; that eventually end up in the animals of species ¢; is
given by the entry in the ith row and jth column of the matrix AB.

b. What physical significance is associated with the matrices A~', B~', and (AB)™' = B~'A~'?
10. In Section 3.6 we found that the parametric form (x(z), y(t)) of the cubic Hermite polynomials

through (x(0), y(0)) = (xq, yp) and (x(1), y(1)) = (x,, y;) with guidepoints (x; + ty, yo + Bo) and
(xy — oy, ¥, — B1), respectively, is given by

x(t) = [20xp — ;) + (@0 + @I + [Blx) —x0) — ) —2a0]t” + apt + xg

and
Y1) = 200 = y1) + (Bo + BOIE + 30— ) — B — 2817 + Bor + yo.
The Bézier cubic polynomials have the form
(1) = [20x0 — x1) + 3o + @)’ + [Blx —x0) — 3en +20)]® + 3aor + xo
and

$(1) = [2000 — y1) +3(Bo + BIIE + B0y — ya) — 3(B1 +26:)1t° + 3Bot + Yo.

a. Show that the matrix

7 4 40
<6 =3 =6 0
A=| & 0 3@
0 0 0 1

maps the Hermite polynomial coefficients onto the Bézier polynomial coefficients.
b.  Determine a matrix B that maps the Bézier polynomial coefficients onto the Hermite polynomial
coefficients.

11. Consider the 2 x 2 linear system (A +i B)(x+1y) = ¢+ id with complex entries in component form:

(ay +iby)(x; +iy) + (@2 + ibip)(xy +iys) = € +id),
(a2 + iby)(x) + iy1) + (@zz + ibp)(x: + iyy) = ¢; + id.
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260 CHAPTER 6 = Direct Methods for Salving Linear Systems

a. Use the properties of complex numbers to convert this system to the equivalent 4 x 4 real linear
system

Real part: Ax— By =c¢,
Imaginary part: Bx+ Ay=d.

b.  Solve the linear system

(1 =20 (x; +iy) + B+ 2 +iy) =5 + 2,
Q+D(x +iy) + @+ 3 +iy) =4 — i

‘ ! 6.5 Matrix Factorization

Matrix factorization is another of  Gaussian elimination is the principal tool in the direct solution of linear systems of equations,

the important techniques that so it should be no surprise that it appears in other guises. In this section we will see that
Gauss seems 1o be the first to the steps used to solve a system of the form Ax = b can be used to factor a matrix. The
have discovered. Itis included in - factorization is particularly useful when it has the form A = LU, where L is lower triangular
his two-valume treatise on and U is upper triangular. Although not all matrices have this type of representation, many

Aelcail meckanies Theora do that occur frequently in the application of numerical techniques.

In Section 6.2 we found that Gaussian elimination applied to an arbitrary linear system
it ki vias Ax = b requires O (n®/3) arithmetic operations to determine x. However, to solve a linear
published in 1809. system that involves an upper-triangular system requires only backward substitution, which
takes O(n?) operations. The number of operations required to solve a lower-triangular
system is similar.

Suppose that A has been factored into the triangular form A = LU, where L is lower
triangular and U is upper triangular. Then we can easily solve for X using a two-step process.

motus corporem coelestium in
sectionibus conicis Solem

o First define the temporary vectory = U xand solve the lower triangular system Ly = bfor
y. Since L is triangular, determining y from this equation requires only O (n?) operations.

® Oncey is known, the upper triangular system Ux = y requires only an additional O(n?)
operations to determine the solution x.

Solving a linear system Ax = b in factored form means that the number of operations
needed to solve the system Ax = b is reduced from O(n*/3) to O (2n?).

Example 1 Compare the approximate number of operations required to determine the solution to a
linear system using a technique requiring O (n’/3) operations and one requiring 0 (2n?)
whenn = 20, n = 100, and n = 1000.

Solution Table 6.3 gives the results of these calculations. =
Table 63 n ﬂ3f3 n* Reduction
10 33 x 10° 2 x 107 40%
100 3.3 x 10° 2 x 10° 949
1000 3.3 x 10* 2 x 10° 99.4%

As the example illustrates, the reduction factor increases dramatically with the size of
the matrix. Not surprisingly, the reductions from the factorization come at a cost; determin-
ing the specific matrices L and U requires O(n’ /3) operations. But once the factorization
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B5 Matrix Factorization 261

is determined, systems involving the matrix A can be solved in this simplified manner for
any number of vectors b.
To obtain the LU factorization of an n x n matrix A:

® use Gaussian elimination to solve a linear system of the form Ax = b.
® if Gaussian elimination can be performed without row interchanges, then
— the upper triangular matrix [/ is the matrix that results when Gaussian elimination
is complete,

— the lower triangular matrix L has 1s on its main diagonal, and each entry below the
main diagonal is the multiplier that was needed to place a zero in that entry when
Gaussian elimination was performed.

The process is outlined in the following example.

Example 2 Determine the LU factorization for matrix

1 1 0 3
2 1 -1 1
A= 3 3 1 2
=1 2 3 =1

Solution A system involving the matrix A system was considered in the Illustration of
Section 6.2 (see page 230), where we saw that the sequence of operations

(E; —2E)) > (E2), (E3—3E)) — (E3), (Es—(-1)E1)— (E4,)
followed by
(Ey —4E;) — (E3) and (Es— (—3)E) — (Ed)
converts the system to the triangular system

X1+ x2 + 3.!24 = 4,

—Xa— x3— Sxy= -7,

3x3+13x4 = 13,

—13x4 = —13.

As a consequence, the upper triangular matrix in the factorization is

1 1 0 3
0 -1 -1 -5
U=lo o 3
0 0 0 -13

The multipliers used in Gaussian elimination were
my=2 mu=3 my=-1, mp=4 mp=-3, and myu=0,

so the lower triangular matrix is

(=Bl ==}
[~ = [~}

b~

I
— b
W b=

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
deemed S Ry supprEssed content dees ool maxtlaly affoa the overll leaming expericnce. Cengage Loaming reserves the ripht i remove additinnal contee & any 1time f subrseguent rights restrictons rogquire [k



262 CHAPTER 6 = Direct Methods for Salving Linear Systems

Hence the LU factorization of A is

1 1 0 4 1 0 00 1 1 0 3
2 1 -1 1 2 : 00 0 -1 -1 -5
4=l 3 1 1 2| 3 410||lo @ 3 @B|TH
-1 2 3 -1 -1 -3 01 0 0 0 -13
[ |
The next example uses the factorization in the previous to solve a linear system.
Example 3 Use the factorization found in Example 2 to solve the system
x+ x2 +3x= 8
eg+ x— nt+ u= 1,
Ixi— - x+2x= 14,
—x1+2x+36— n=-"T
Solution To solve
1 000 1 1 0 3 x 8
2 1 00 0 -1 -1 -5 x3 7
mekty=| 5 da30lle o 3 || |=| 24
-1 -3 01 0 0 0 -13 X4 -7
we first introduce the temporary vector y = Ux. Then b = L(Ux) = Ly. That is,
1 000 i 8
2 r00||n|_| 7
Ey=| 3 4 vl 5™ 2
=1 =3 0 1 4 =,
This system is solved for y by a simple forward-substitution process:
=8
2y1+y2=7, 50 y2=T7-2y = -9
I+dm+m=14, so x3=14-3y—4n= 26
—y1—=3y2+ys=-7 s0 ys=-T+y +3y =-26.
We then solve Ux = y for x, the solution of the original system; that is,
1 1 0 3 X 8
0 -1 -1 -5 % | -9
0 0 3 13 un |~ | 26
0 0 0 -13 X4 —-26
Using backward substitution we obtain x4 = 2, x3 =0, x, = —1,x; = 3. [ ]

Although new matrices L=[l;] and U =[u;;] are constructed by the program
LUFACT64, the values generated replace the corresponding entries of A that are no
longer needed. Thus, the new matrix has entries a;; =1I;; for each i=2,3,...,n and
j=12,...,i—landa;j=u;; foreachi=1,2,...,nand j=i+1,i +2,...,n

The factorization is particularly useful when a number of linear systems involving A
must be solved because most of the operations, those involving the Gaussian Elimination,
need to be performed only once.
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6.5 Matrix Factorization 263

Permutation Matrices

In the previous discussion we assumed that A is such that a linear system of the form
Ax = b can be solved using Gaussian elimination that does not require row interchanges.
From a practical standpoint, this factorization is useful only when row interchanges are
not required to control the round-off error resulting from the use of finite-digit arithmetic.
Although many systems we encounter when using approximation methods are of this type,
factorization modifications must be made when row interchanges are required. We begin
the discussion with the introduction of a class of matrices that are used to rearrange, or
permute, rows of a given matrix.

An n x n permutation matrix P has precisely one entry in each column and each row
whose value is 1, and all of whose other entries are 0.

lllustration The matrix

1
P=0
0

L= =]

0
1
0

is a3 x 3 permutation matrix. For any 3 x 3 matrix A, multiplying on the left by P has the
effect of interchanging the second and third rows of A:

1 00 ay ap ap ay ap ap
PA= 001 dz 4 an = asy a3 a4y |.
010 ay ap an an axn an

Similarly, multiplying A on the right by P interchanges the second and third columns of A.

(|
The matrix multiplication PA There are two useful properties of permutation matrices that relate to Gaussian elimi-
permutes rows of A. nation. The first of these was shown in the Illustration.
The matrix multiplication AP : . . i .
peiiiies ookugs OF A, e If ;’cl,.. .., k, is a permutation of the integers 1, ..., n and the permutation matrix P =
(pij] is defined by
Q1 G2 ot Gy
1, ifj=k, Gl @2t G
= then PA =
By {u, otherwise, P :
Q1 Gk, 2t Gk

The second is

® If P is a permutation matrix, then P~ exists and P! = P'.

Example 4 Determine a factorization in the form A = (P'L)U for the matrix

0 0

11 -
o= b =y
1 2
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264 CHAPTER 6 = Direct Methods for Salving Linear Systems

Solution The matrix A does not have an LU factorization because a;; = 0. However, using
the row interchange (E) < (E2), followed by (Es+ E;) — (E3) and (Es — Ey) — (E4),
produces

11 -1 2
01 10
= 00 12
|00 03
The permutation matrix associated with the row interchanges (E;) <> (E;) and (E;) <
(Eq) is
10007 0100 0100
pP= 0001 1L 00O _|0O0O01
“l10 010 o010 |o0 19|
0100 | 0 0 0 1 1 O ¢ T
and
1 1 -1 2
1 2 B2
= f =k 208
0 0 -1 1

Gaussian elimination is performed on P A using the same operations as on A, except without
the row interchanges. That is, (E2 — E1) — (E2), (Es + E1) — (E3), followed by
(E4 + E3) — (E4). The nonzero multipliers for P A are, consequently,

my =1 my=-1, and mgy=-—1,

and the LU factorization of PA is

10 00 11 -1 2
1 1 00 01 1. @
A= 3240 10||0e 12|
00 -1 1 00 0 3]
Multiplying by P~! = P’ produces the factorization
00 =1 E171 1 =1 2
10 00 0 1 10
— p-=1 — pt - r i
A=P (LU)= P'(LU) = (P'L)U = 10 1 0 00 12
11 00j[00 03

MATLAB has the command 1u(A) to obtain an LU factorization of a matrix A in the
form A = PLU, where U is upper triangular, L is lower triangular, and P is a permutation

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
deemed S Ry supprEssed content dees ool maxtlaly affoa the overll leaming expericnce. Cengage Loaming reserves the ripht i remove additinnal contee & any 1time f subrseguent rights restrictons rogquire [k



6.5 Matrix Factorization 265
matrix. Notice that the permutation matrix P that MATLAB constructs is the matrix that
we would call P'. We apply this command to the matrix in Example 4 by first defining
A=[00-14;11-12;-1+-110;1202]
and then calling
[L, U, P] = 1u(A)

MATLAB responds with
10 00 11 -1 2 000 1
11 00 01 10 100 0
b=l 3% 78" 1sh™F=l§9 1%
00 -1 1 00 03 0100

For these matrices L, U, and P, we have A = PLU.

EXERCISE SET 65

1.  Solve the following linear systems.

[ 10072 3 =-1][=
o | 2 oHo_z 1][H
| -1 01]l0 0 3]|mx
[ 2 011 1 1][=x =1
b | -1 oflo12||x|=| 3
| 32 alleea]|lx 0

2. Factor the following matrices into the LU decomposition with [;; = 1 for all i.

M- OO

[2 -1 1 1.012 -2132 3.104
a. 3 3 9 b. -2.132 409 -7.013
| 3 3 -5 3104 -7.013 0.014
[2 0 0 O
1 15 0 0
“ lo -3 050
| 2 -2 1 1
[ 21756  4.0231 -2.1732  5.1967
d —4.0231 6.0000 O 1.1973
: -1.0000 -5.2107 L o
6.0235  7.0000 0 —4,1561
3.  Obtain factorizations of the form A = P*LU for the following matrices.
0 2 3 1 2 -1
a A=]|1 1 -1 b A=|1 2 3
0 -1 1 2 -1 4
1 =2 3 0 1 =2 3 0
i -6 9 3 1 =2 3 1
& 4=l 14 1 & A=y 2 2 -3
1 -2 2 -2 2 1 3 -1
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266 CHAPTER 6 = Direct Methods for Salving Linear Systems

4.  Suppose A = P'LU, where P is a permutation matrix, L is a lower-triangular matrix with 1s on the
diagonal, and U/ is an upper-triangular matrix.
a. Count the number of operations needed to compute P/ LU for a given matrix A.
b.  Show that if P contains k row interchanges, then

det P =det P' = (-1)*.

¢. UsedetA =detP' - detL - detl! = (—1)*detU to count the number of operations for deter-
mining det A by factoring.
d. Factor A as P'LU and use this factorization to compute det A and to count the number of

operations when

0 2 1 4 -1 3

1 2 -1 3 4 0

4=| 0 1 1 -1 2 -

- 2 3 -4 2 0 5|°

1 1 1 3 0 2

-1 -1 2 -1 2 0

5. Use the LU factorization obtained in Exercise 2 to solve the following linear systems.

a - B+ pn=-l, b. 1.012x; — 2.132x; + 3.104x; = 1.984,
304+ 30+ 9% =0, —2.132x; +4.096x; — 7.013x; = —5.049,
In+3n+ia=4 3.104x;, — 7.013x; + 0.014x; = —3.895.

¢ 2x =13,

x; + 1.5x; =45,
— 312 +0‘5K3 = '—6.6,

2).'|— 212+ X3+ Xy =08
d.  2.1756x, +4.0231x, — 2.1732x; + 5.1967x; = 17.102,

—4,0231%, + 6.0000x, + 1.1973x, = —6.1593,
—1.0000x; — 5.2107x, + L.1111x, = 3.0004,
6.0235x, -+ 7.0000x, — 4.1561x; = 0.0000.

‘ ; 6.6 Techniques for Special Matrices

Although this chapter has been concerned primarily with the effective application of Gauss-
ian elimination for finding the solution to a linear system of equations, many of the results
have wider application. It might be said that Gaussian elimination is the hub about which
the chapter revolves, but the wheel itself is of equal interest and has application in many
forms in the study of numerical methods. In this section we consider some matrices that are
of special types, forms that will be used in other chapters of the book.

Strict Diagonal Dominance
Each main diagonal entry in a

strictly diagonally dominant The n x n matrix A is said to be strictly diagonally dominant when
matrix has a magnitude that is %

;”::::gi::::x:’;‘:‘;:'ﬁ; :: lai] > Z laij| holds foreachi =1,2,...,n.
entries in that row. J_;;I;'
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66 Techniques for Special Matrices 267

lllustration  Consider the matrices

N

The nonsymmetric matrix A is strictly diagonally dominant because

(=TT |
Lh Ln ba

0 6 4 -3
-1 and B = 4 -2 0 |.
-6 -3 0 1

[7I =121+ [0l, I5]> 3]+ -1, and [|-6]=> [0+ I5].

The symmetric matrix B is not strictly diagonally dominant because, for example, in the
first row the absolute value of the diagonal element is |6| < |4| +|—3| = 7. Itis interesting
to note that A” is not strictly diagonally dominant because the middle row of A" is [2 5 5],
nor, of course, is B' because B' = B. 6

Strictly Diagonally Dominant Matrices

A strictly diagonally dominant matrix A has an inverse. Moreover, Gaussian elimination
can be performed on any linear system of the form Ax = b to obtain its unique solution
without row or column interchanges, and the computations are stable with respect to the
growth of round-off error.

Positive Definite Matrices

The name positive definite refers A matrix A is positive definite if it is symmetric and if x'Ax > 0 for every n-dimensional
to the fact that the number x' Ax column vector x # 0.
must be positive whenever x 3 0. Using the definition to determine whether a matrix is positive definite can be difficult.

Fortunately, there are more easily verified criteria for identifying members that are and are
not of this important class.

Positive Definite Matrix Properties
If A is an n x n positive definite matrix, then

(i) A has an inverse;
(ii) a; >0foreachi=1,2,...,m;
(iii) maxi<; j<, la| < maxi<i<, lail;

(iv) (a;)* < aa;; foreachi # j.

Our definition of positive definite requires the matrix to be symmetric, but not all authors
make this requirement. For example, Golub and Van Loan [GV], a standard reference in
matrix methods, requires only that x' Ax > 0 for each nonzero vector x. Matrices that we
call positive definite are called symmetric positive definite in [GV]. Keep this discrepancy
in mind if you are using material from other sources.

The next result parallels the strictly diagonally dominant result presented previously.
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268 CHAPTER 6 = Direct Methods for Salving Linear Systems

Positive Definite Matrix Equivalences
The following are equivalent for any n % n symmetric matrix A:

(i) A is positive definite.

(ii) Gaussian elimination without row interchanges can be performed on the lin-
ear system Ax = b with all pivot elements positive. (This ensures that the
computations are stable with respect to the growth of round-off error.)

(iii) A can be factored in the form LL', where L is lower triangular with positive
diagonal entries.

(iv) A can be factored in the form LDL', where L is lower triangular with 1s on
its diagonal and D is a diagonal matrix with positive diagonal entries.

(v) Foreachi=1,2,...,n,wehave

apn @y - @y
az dzp -+ Gy

det & : E = 0.
Qi ap - a4y

The next examples illustrate portions of this result. First we will consider (v).
Example 1 Show that the symmetric matrix
2 -1 0
A= -1 2 -1
0 -1 2

is positive definite.
Solution 'We have

det[2] =2 > 0, dca[_f _H=4—1=3>0,
and
2 =1 0
det | -1 2 -1 =2de:[j ‘;]u{wl)det[“ll) ‘é]
0 -1 2
=24—-1)+(—2+0)=4>0,
s0, by (v), A is positive definite. ]

The next example illustrates how the LDL' factorization of a positive definite matrix
described in (iv) of the result is formed.

Example 2 Determine the LDL' factorization of the positive definite matrix

4 -1 1
A=| =1 a2s 275 |.
1 275 35
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66 Technigues for Special Matrices 269

Solution The LDL' factorization has 1s on the diagonal of the lower triangular matrix L
so we need to have

app dpy ay 1 0 0 d] 0 0 1 le 131
A= | an a»n an =|Iy 1 0 0 d 0 01 132
dyy diyp dyn I 31 131 1 00 dg 00 1

dy dily dyly
= | dilyy dr+dil dalyy +dylyy s
dily  dibyby +dalsy b3 +doldy + ds

Thus
ay: 4=d; = d; =4, ay: — l=dilyy = L= —-025
asy: 1=dilyy = 13 =025, axn: 4.25=d, +d|i§l = dy=4

ay: 275 =dlnly + dalsy = 153 =0.75, a3 3.5 =d1l§1 + dgf%z +dy = di=1,

and we have
1 0 0 4 00 1 025 025
A=LDL'=| —-025 1 0 0 4 0 0 1 875 |. ]
025 075 1 001 0 0 1
";”8':::3:';‘ Cm]"‘:" . Any symmetric matrix A for which Gaussian elimination can be applied without row
f'nili afﬁz:?:joivr::':n interchanges can be factored into the form LDL'. In this general case, L is lower triangular
mmc:’; 2 srvepiog i e with 1s on its diagonal, and D is the diagonal matrix with the Gaussian elimination pivots

carly 1900s. He developed this on its diagonal. This result is widely applied because symmetric matrices are common and

factorization method 1o compue  ©asily recognized.
solutions to least squares The factorization in part (iii) of the positive definite matrix equivalences, that is, A =

problems. LL',is known as Cholesky’s factorization. The next example shows how this is done.
Example 3 Determine the Cholesky L L' factorization of the positive definite matrix
4 -1 1
A=| -1 425 275 |.
1 275 35

Solution The LL' factorization does not necessarily have 1s on the diagonal of the lower
triangular matrix L so we need to have

ay  ay ay Iy 0 0 ly by Iy
A= |ay an an |=|ln I 0 0 In In

ay an ay Iy lp Ia 00 In
B luby Lyl
=| lnln G+ Inly + Ialy
by by +inly G+ 185+
Thus
ap;: 4 =f%| =%hi=% asy: — 1=l = by =-05
ay: l=liply = I =05, ax: 4.25 =1§] +I§'2 =% Ipn=2

ay: 275 =yl +lply = =15, ayw 35= "3%1 +I§2 + i§3 = 3 =1,
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210 CHAPTER 6 = Direct Methods for Salving Linear Systems

and we have

2 0 0 2 =05 05
A=LL'=]|-05 2 0 0 2 15|, ]

05 15 1 0 0 1
MATLAB commands are available for computing both the LDL' (1d1) and Cholesky
(LL'") (chol) factorizations. For example, for the matrix A defined by
A=1[4-11; -14.25 2.75; 1 2.75 3.5]
we have

[L, D] = 1d1(4)

giving
1.000000000000000 0 0
L = | —0.250000000000000 1.000000000000000 0 and
0.250000000000000 0.750000000000000 1.000000000000000
4 0 0
D=|0 4 0
{1 S 1 |
and
L=chol(4)
giving

2.000000000000000 —0.500000000000000 0.500000000000000
L= 0  2.000000000000000 1.500000000000000
0 0 1.000000000000000

Band Matrices

The last special matrices considered are band matrices. In many applications, band matrices
are also strictly diagonally dominant or positive definite. This combination of properties is
very useful,
The name for a band matrix Ann x n matrix is called a band matrix if integers p and g, with 1 < p, g < n, exist
comes from the fact that all the with the property that @;; = 0 whenever p < j —i org < i — j. The number p describes
nonzero entries lie ina band that  the number of diagonals above, and including, the main diagonal on which nonzero entries
is centered on the main diagonal.  may lie. The number g describes the number of diagonals below, and including, the main
diagonal on which nonzero entries may lie. In most applications, p = g and the nonzero
entries are evenly banded about the main diagonal.

The bandwidth of the band matrix is w = p + ¢ — 1, which tells us how many of the
diagonals can contain nonzero entries. The 1 is subtracted from the sum of p and g because
both of these numbers count the main diagonal.

For example, the matrix

72 1 0
35 -3 -2
Ao s & 18 it
00 5 8

is a band matrix with p = 3 and ¢ = 2, so it has bandwidth3+2 — 1 =4,
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66 Technigues for Special Matrices n

Tridiagonal Matrices

Band matrices concentrate all their nonzero entries about the diagonal. Two special cases
of band matrices that occur often have p = ¢ = 2 and p = g = 4. Matrices of bandwidth
3 that occur when p = g = 2 are called tridiagonal because they have the form

an  dap 0-_: ................. O
ay ap a3 .
0. an. an, @, :
k= s CEN iy
- 5 -0
"'.‘:'an—l.n

| P L0 "-an_l.n Wi

Tridiagonal matrices will appear in Chapter 11 in connection with the study of piecewise
linear approximations to boundary-value problems. The case of p = ¢ = 4 will also be
used in that chapter for the solution of boundary-value problems, when the approximating
functions assume the form of cubic splines.

The factorization methods can be simplified considerably in the case of band matrices
because a large number of zeros appear in regular patterns. Of particular interest is the Crout
factorization, where A = LU with U having all 1s on its diagonal.

Crout factorization is illustrated in the following example.

Example 4 Determine the Crout factorization of the symmetric tridiagonal matrix

2 -1 0 O
-1 2 =1 O
0 -1 2 =1
0O 0 =1 2

Solution The LU factorization of A has the form

dayy 0 0 0 i I“ 0 0 0 1 Uy 0 0

h dzy dyx 0 _ Iz[ fzz 0 0 0 1 Uas 0

= 0 iz diz dig = 0 132 133 0 0 0 1 W3y

0 0 43 Q44 L 0 0 143 1.14 0 0 0 1
[ I Iuy 0 0
_ | I2t+bun Ioun 0
0 lyy b33+ Iun 33134
| 0 0 lia L+ lisusg

Thus
ap: 2=Ilyp = In =2, a —1l=lup = up=-3},
ay: —l=b) = h=-1, ay: 2=lp+hup = lInp= %
ax: —l=lpupn = un=-3% @y —l=ly = lp=-1,

@ 2=l tinun = ln=3, e —1=lsus = uy=-3,
ap: —l=lyp = Iy =—1, aw: 2=l +laus = ly=13.
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212 CHAPTER 6 = Direct Methods for Salving Linear Systems

This gives the Crout factorization

2 -1 0 0 2 0 00 1_% 0 0
-1 2 -1 0 -1 % o0 0 0o 1 -2 o0
R 0 -1 2 -1 0 -1 $0fl0o o 1 -3 B
0 0 -1 2 0 0 -1 3 0 0 0 1
m
The next example shows how a linear system is solved once the Crout factorization is
known.

Example 5 Use this Crout factorization found in Example 4 to solve the linear system

25— xo =5
—x;+ 20— x3 =0,
— x+22n— xa=0,

= n+2a=1.

Solution First we introduce a temporary vector ¥y = U/x and use forward substitution to
solve the system

2 0 oo i 1
=1 2 00 ¥y 0
= 3 2 | =
b=l o1 $o|[n|[T]o
0 0 -1 5[ 1
This gives
1
=l =¥ =g,
3 1
“n+on=0= p=3;
+‘i =0 = =
}'2 3y3_ )“3—4-
S
...y3+1y4=1$y4=1,
— 111 ) !
y_ 2’3!49 X
Then using backward substitution to solve Ux =y,
1 - 0 0][= :
0 1-% ofl= 5
— _i — 3
=le 0 1| !
0 0 0 1]|[x 1
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66 Technigues for Special Matrices 2713
gives
x=1,
LI =N Ry
X3 41:4—4 i= 1,
X —%x —l = x;=1
21— 3F=3 2=1
X —lx —l = =1
1 2=3 1=
andx=(1,1,1, ). "

The tridiagonal factorization can be applied whenever [; £ 0 foreachi =1,2,...,n.
Two conditions, either of which ensure that this is true, are that the coefficient matrix of the
system is positive definite or that it is strictly diagonally dominant. An additional condition
that ensures this method can be applied is as follows.

Nonsingular Tridiagonal Matrices

Suppose that A is tridiagonal witha; ;_; # Oanda; ;. # Oforeachi =2,3,...,n—1.
If lan| > lanl, lam| > |ay,—1l, and la;| = |a;i-1| + |aji+1| foreachi = 2,3,...,
n — 1, then A is nonsingular, and the values of /; are nonzero foreachi = 1,2,...,n.

EXERCISE SET 66

3 55

Determine which of the following matrices are (i) symmetric, (i) singular, (iii) strictly diagonally
dominant, and (iv) positive definite.

21 = 1
I 3] - 1 -3}
[2 1 0 [[2 1 .0
c 0 3 0 d. g3 2
L1 0 4 L1 2 4
[ 4 2 6 [ 2 =1 0
e 3 W0 7 [ S T
-2 -1 -3 Lo 2 2
(4 0 0 0 [ 2 3 1 2
6 7 00 h. -2 4 -1 5
® |9 m 1 3007 15 1
[ 5 4 11 | 6 -9 3 7
Find a factorizaton of the form A = LDL' for the following symmetric matrices:
[ 2 -1 0 [ 4 1 I 1
a A= |-l 2 -1 1 3 -1 1
[0 -1 2 b A=y o 349
bt 1 i 2
(4 1 -1 0 (6 2 1 -1
1 3 -1 0 2 4 1 0
© A=] 4.1 52 & A=) 31 & -
I 0 2 4 -1 0 -1 3
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214 CHAPTER 6 = Direct Methods for Salving Linear Systems

3 Find a factorization of the form 4 = LL' for the matrices in Exercise 2.

4. Use the factorization in Exercise 2 to solve the following linear systems.

a 2y - x =13} b 4x 4+ x4+ x4+ x=0.65
—x1+20— x=-3, x4+ 3 — x4 xe=0.05,
—x+2x=1. n— x+2n =0,
x4+ x +2x4=0.5.
¢ 4+ - x =7, d. 6u+2n+ xn— x=0,
x1+3x—- x; =8, 20 +4x:+ x3 =7,
—x1 — X2+ 5x3 + 23 = —4, xn+ ntdrn-— xm=-—1,
2x3 4+ 42, =6. —x1 — x4+ 3x=-2.
5. Use Crout factorization for tridiagonal systems to solve the following linear systems.
a. X — X3 =1, b. 3x+ x; =-1,
- 2x) +4xy = 203 = =1, 20+ 4+ x3=17,
— x4+ 2x;=1.5. 2x; + 5x3 =9.
C. ZII - X3 =3,
- X +212— 132—3.
. 2):3 =1,
d.  0.5x; +0.25x; =0.35,
0.35x; + 0.8x; + 0.4x; =0.77,

0.25x3 4+ x5+ 0.5xy = =0.5,
X3 — 2..1'4 =-2.125.

6. Let A be the 10 x 10 tridiagonal matrix givenby a; = 2, @+ = a;;-1 = —1, foreachi =2,...,9,

and @), = a0 = 2,412 = ape = —1. Let b be the 10-dimensional column vector given by
by =by=1andb; = 0foreachi = 2,3,...,9. Solve Ax = b using the Crout factorization for
tridiagonal systems.

7.  Suppose that A and B are positive definite n % n matrices.
a. Must —A also be positive definite?
b. Must A’ also be positive definite?
¢, Must A + B also be positive definite?
d. Must A? also be positive definite?
e. Must A — B also be positive definite?

8 Let
1 0 =]
A= 01 1
=1 1 o
Find all values of o for which
a. A issingular.
b. A is strictly diagonally dominant.
c. A is symmetric.
d. A is positive definite.
9  Let
a 1 0
A=|8 2 1 |.
0 1 2

Find all values of @ and § for which
a. A is singular.
b. A is strictly diagonally dominant.

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
deemed S Ry supprEssed content dees ool maxtlaly affoa the overll leaming expericnce. Cengage Loaming reserves the ripht i remove additinnal contee & any 1time f subrseguent rights restrictons rogquire [k



6.7 Survey of Methods and Software 215

c. A is symmetric.
d. A is positive definite.
10. Suppose A and B commute; that is, AB = BA. Must A’ and B' also commute?

11.  In a paper by Dorn and Burdick [DoB], it is reported that the average wing length that resulted
from mating three mutant varieties of fruit flies (Drosophila melanogaster) can be expressed in the

symmetric matrix form
159 169 213
A= 169 131 172 |,
213 172 1.85

where a;; denotes the average wing length of an offspring resulting from the mating of a male of type
i with a female of type j.

a.  What physical significance is associated with the symmetry of this matrix?
b. s this matrix positive definite? If so, prove it; if not, find a nonzero vector x for whichx'Ax < 0.

- _ 6.7 Survey of Methods and Software

In this chapter we have looked at direct methods for solving linear systems, A linear system
consists of n equations in n unknowns expressed in matrix notation as Ax = b. These
techniques use a finite sequence of arithmetic operations to determine the exact solution of
the system subject only to round-off error. We found that the linear system Ax = b has a
unique solution if and only if A~! exists, which is equivalent to det A # 0. The solution of
the linear system is the vector x = A~'b.

Pivoting techniques were introduced to minimize the effects of round-off error, which
can dominate the solution when using direct methods. We studied partial pivoting, scaled
partial pivoting, and total pivoting. We recommend the partial or scaled partial pivoting
methods for most problems because these decrease the effects of round-off error without
adding much extra computation. Total pivoting should be used if round-off error is suspected
to be large. In Section 7.6 we will see some procedures for estimating this round-off error.

Gaussian elimination was shown to yield a factorization of the matrix A into LU, where
L is lower triangular with 1s on the diagonal and U is upper triangular. (This process is
sometimes called Doolittle’s factorization.) Not all nonsingular matrices can be factored this
way, but a permutation of the rows will always give a factorization of the form PA = LU,
where P is the permutation matrix used to rearrange the rows of A. The advantage of the
factorization is that the work is reduced when solving linear systems Ax = b with the same
coefficient matrix A and different vectors b.

Factorizations take a simpler form when the matrix A is positive definite. For example,
the Cholesky factorization has the form A = LL', where L is lower triangular. A symmetric
matrix that has an LU factorization can also be factored in the form A = LDL', where
D is diagonal and L is lower triangular with 1s on the diagonal. With these factorizations,
manipulations involving A can be simplified. If A is tridiagonal, the LU factorization takes a
particularly simple form, with U having 1s on the main diagonal and its only other nonzero
entries on the diagonal immediately above. In addition, L has its only nonzero entries
on the main diagonal and on the diagonal immediately below. Another important matrix
factorization technique is the singular value decomposition considered in Section 9.6.

The direct methods are the methods of choice for most linear systems. For tridiagonal,
banded, and positive definite matrices, the special methods are recommended. For the
general case, Gaussian elimination or LU factorization methods, which allow pivoting, are
recommended. In these cases, the effects of round-off error should be monitored. In Section
7.6 we discuss estimating errors in direct methods.
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