Mathematical Preliminaries
and Error Analysis

1.1 Introduction

This book examines problems that can be solved by methods of approximation, techniques
called numerical methods. We begin by considering some of the mathematical and com-
putational topics that arise when approximating a solution to a problem. Nearly all the
problems whose solutions can be approximated involve continuous functions, so calculus
is the principal tool to use for deriving numerical methods and verifying that they solve the
problems. The calculus definitions and results included in the next section provide a handy
reference when these concepts are needed later in the book.

There are two things to consider when applying a numerical technique. The first and
most obvious is to obtain the approximation. The equally important second objective is
to determine a safety factor for the approximation: some assurance, or at least a sense, of
the accuracy of the approximation. Sections 1.3 and 1.4 deal with a standard difficulty that
occurs when applying techniques to approximate the solution to a problem:

® Where and why is computational error produced and how can it be controlled?

The final section in this chapter describes various types and sources of mathematical software
for implementing numerical methods.

1.2 Review of Calculus

Limits and Continuity

The limit of a function at a specific number tells, in essence, what the function values
approach as the numbers in the domain approach the specific number. The limit concept is
basic to caleulus, and the major developments of calculus were discovered in the latter part
of the seventeenth century, primarily by Isaac Newton and Gottfried Leibnitz. However, it
was not until 200 years later that Augustus Cauchy, based on work of Karl Weierstrass, first
expressed the limit concept in the form we now use.

We say that a function f defined on a set X of real numbers has the limit L at x;, written
lim,_, . f(x) = L, if, given any real number £ > 0, there exists a real number § > 0 such
that |f(x) — L| < & whenever 0 < |x — xg| < 8. This definition ensures that values of the
function will be close to L whenever x is sufficiently close to xp. (See Figure 1.1.)
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2 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

Figure 1.1
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A function is said to be continuous at a number in its domain when the limit at the
number agrees with the value of the function at the number. So a function f is continuous
at xg if limy . o, f(x) = f(xo).

A function f is continuous on the set X if it is continuous at each number in X. We
use C(X) to denote the set of all functions that are continuous on X. When X is an interval
of the real line, the parentheses in this notation are omitted. For example, the set of all
functions that are continuous on the closed interval [a, b] is denoted Cla, b].

The limit of a sequence of real or complex numbers is defined in a similar manner. An
infinite sequence {x, ]~ , converges toa number x if, givenany & > 0, there exists a positive
integer N (&) such that |x, — x| < & whenever n > N(g). The notation lim,_, . x, = x, or
X, = X as n — 00, means that the sequence {x,};° | converges to x.

Continuity and Sequence Convergence

If f is a function defined on a set X of real numbers and xy € X, then the following are
equivalent:

a. fiscontinuous at xp.
b. If {x,}%°, is any sequence in X converging to xq, then

n=1
Jim f(x) = f(xo).

All the functions we consider when discussing numerical methods are continuous
because this is a minimal requirement for predictable behavior. Functions that are not
continuous can skip over points of interest, which can cause difficulties when we attempt
to approximate a solution to a problem.

More sophisticated assumptions about a function generally lead to better approxima-
tion results. For example, a function with a smooth graph would normally behave more
predictably than would one with numerous jagged features. Smoothness relies on the con-
cept of the derivative.
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1.2 Review of Calculus 3

Differentiability

If f is a function defined in an open interval containing xo, then f is differentiable at x;
when

Fo) = tim T8~ F0)

X=X X —Xp

exists. The number f'(xp) is called the derivative of f at x;. The derivative of f at x; is
the slope of the tangent line to the graph of f at (xg, f (x0)), as shown in Figure 1.2.

Figure 1.2

The tangent line has slope f'(x,)
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A function that has a derivative at each number in a set X is differentiable on X.
Differentiability is a stronger condition on a function than continuity in the following
sense.

Differentiability Implies Continuity
If the function f is differentiable at x;, then f is continuous at xg.

The set of all functions that have n continuous derivatives on X is denoted C"(X), and
the set of functions that have derivatives of all orders on X is denoted C* (X). Polynomial,
rational, trigonometric, exponential, and logarithmic functions are in C*(X), where X
consists of all numbers at which the function is defined.

The next results are of fundamental importance in deriving methods for error estimation.

The proofs of most of these can be found in any standard calculus text.

Mean Value Theorem
If f € Cla,b] and f is differentiable on (a, b), then a number ¢ in (a, b) exists such
that (see Figure 1.3)

_f®) - f@)
Fie) == — =L
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4 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

Figure 1.3
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The following result is frequently used to determine bounds for error formulas.

Extreme Value Theorem
If f € Cla, b], then ¢; and c; in [a, b] exist with f{c;) < f(x) < f(cz) for all x in
[a, b]. If, in addition, f is differentiable on (a, b), then the numbers ¢; and ¢; occur
either at endpoints of [a, b] or where f is zero.

The values where a continuous function has its derivative 0 or where the derivative does
not exist are called critical points of the function. So the Extreme Value Theorem states
that a maximum or minimum value of a continuously differentiable function on a closed
interval can occur only at the critical points or the endpoints.

Qur first example gives some illustrations of applications of the Extreme Value Theorem
and MATLAB.

Example 1 Use MATLAB to find the absolute minimum and absolute maximum values of
f(x) =5c082x — 2xsin2x

on the intervals (a) [1,2], and (b) [0.5, 1].

Solution The solution to this problem is one that is commonly needed in calculus. It
provides a good example for illustrating some commonly used commands in MATLAB
and the response to the commands that MATLAB gives. In our presentations of MATLAB
material, input statements appear left-justified using a typewriter—like font. To add
empbhasis to the responses from MATLAB, these appear centered and in cyan type.

For better readability, we will delete the 3> symbols needed for input statements as
well as the blank lines from MATLAB responses. Other than these changes, the statements
will agree with that of MATLAB.

The following command defines f(x) = 5cos2x — 2x sin 2x as a function of x.

f = inline(’5*cos(2%x)-2%x*sin(2*x)’,’x’)
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1.2 Review of Calculus 5
and MATLAB responds with (actually, the response is on two separate lines, but we will
compress the MATLAB responses, here and throughout)

Inline function: f(x) =S5%cos(2%x) — 2% x * 5in(2 *x)

We have now defined our base function f(x). The x in the command indicates that x is the
argument of the function f.

To find the absolute minimum and maximum values of f(x) on the given intervals, we
also need its derivative f'(x), which is

F'(x) = —12in 2x — 4x cos 2x.

Then we define the function fp(x) = f'(x) in MATLAB to represent the derivative with
the inline command

fp = inline(’-12*sin(2*x)-4*x*cos(2*x)’,’x’)

By default, MATLAB displays only a five-digit result, as illustrated by the following com-
mand which computes f(0.5):

£(0.5)
The result from MATLAB is
ans = 1.8600

We can increase the number of digits of display with the command
format long

Then the command

£(0.5)

produces

ans = 1.860040544532602

We will use this extended precision version of MATLAB output in the remainder of the
text.

(a) The absolute minimum and maximum of the continuously differentiable function f
occur only at the endpoints of the interval [1, 2] or at a critical point within this interval.
We obtain the values at the endpoints with

£(1),£(2)

and MATLAB responds with
ans = —3.899329036387075, ans = —0.241008123086347

To determine critical points of the function f, we need to find zeros of f'(x). For this we
use the fzero command in MATLAB:

p =fzero(fp,[1,2])
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6 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

and MATLAB responds with
p = 1.358229873843064
Evaluating f at this single critical point with
£(p)
gives
ans = —5.675301337592883

In summary, the absolute minimum and absolute maximum values of f(x) on the interval
[1, 2] are approximately

f(1.358229873843064) = —5.675301337592883 and f(2) = —0.241008123086347.
(b) When the interval is [0.5, 1] we have the values at the endpoints given by

f(0.5) =5cos1 — 1sin1 = 1.860040544532602 and
f(1) =5cos2 — 2sin2 = —3.899329036387075.

However, when we attempt to determine critical points in the interval [0.5, 1] with the
command

pl = fzero(fp,[0.5 1])

MATLARB returns the response
??? Error using ==> fzero at 293

This indicates that MATLAB could not find a solution to this equation, which is the correct
response because f is strictly decreasing on [0.5, 1] and no solution exists. Hence the
approximate absolute minimum and absolute maximum values on the interval [0.5, 1] are

F(1) = —3.899329036387075 and f£(0.5) = 1.860040544532602. -

The following five commands plot the function on the interval [0.5, 2] with titles for
the graph and axes on a grid.

fplot (£, [0.5 2])
title(’Plot of f(x)?)
xlabel(’Values of x’)
ylabel(’Values of f(x)')
grid

Figure 1.4 shows the screen that results from these commands. They confirm the results
we obtained in Example 1. The graph is displayed in a window that can be saved in a variety
of forms for use in technical presentations.
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1.2 Review of Calculus 1

Figure 1.4
Plot of f(x)

Values of f(x)

0.5 1 15 2
Values of x

The next resultis the Intermediate Value Theorem. Although its statement is not diffi-
cult, the proof is beyond the scope of the usual calculus course.

Intermediate Value Theorem

If f € Cla, bl and K is any number between f (@) and f(b), then there exists a number
¢ in (a, b) for which f(c) = K. (Figure 1.5 shows one of the three possibilities for this
function and interval.)

Figure 1.5
Y
I (a, f(a))

(&, f(b))

B e

L~
=Y

Example 2 Show that x° — 2x* + 3x? — 1 = 0 has a solution in the interval [0, 1].

Solution Consider the function defined by f(x) = x° — 2x* 4+ 3x? — 1. The function f is
continuous on [0, 1]. In addition,

fO=-1<0 and 0<1=jf(1).
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8 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

The Intermediate Value Theorem implies that a number x exists in (0, 1) with =3+
3x2-1=0. .

As seen in Example 2, the Intermediate Value Theorem is used to help determine when
solutions to certain problems exist. It does not, however, give an efficient means for finding
these solutions. This topic is considered in Chapter 2.

Integration

The integral is the other basic concept of calculus. The Riemann integral of the function
f on the interval [a, b] is the following limit, provided it exists:

b n
/‘: fx)dx = mli'ILu ;f(-h') Axj,

where the numbers xg, x,...,x, satisfya = xg < x; < -+ < x, = b and where
Ax; = x; — x;-1, foreach i = 1,2, ...,n, and gz; is arbitrarily chosen in the interval
[xi1, xi].

A function f that is continuous on an interval [a, b] is also Riemann integrable on
[a, b]. This permits us to choose, for computational convenience, the points x; to be equally
spaced in [a, b] and foreach i = 1, 2, ..., n, to choose z; = x;. In this case,

" b g 2225
/; f@&) x_n_apgcTEf(x.-),

where the numbers shown in Figure 1.6 as x; are x; = a + (i(b — a)/n).

Figure 1.6
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Two more basic results are needed in our study of numerical methods. The first is a
generalization of the usual Mean Value Theorem for Integrals.

Mean Value Theorem for Integrals

If f € Cla, b], g is integrable on [a, b], and g (x) does not change sign on [a, b], then
there exists a number ¢ in (a, b) with

b b
f fx)gx) dx =f{c)f glx) dx.
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Figure 1.7

Taylor's Theorem

1.2 Review of Calculus 9

When g(x) = 1, this result reduces to the usual Mean Value Theorem for Integrals. It
gives the average value of the function f over the interval [a, b] as

1 b
f(0)=b—f flx)dx.
—al,

(See Figure 1.7.)

y=f(x) /
Sle) A =N

/

M [

Taylor Polynomials and Series

The final result in this review from calculus describes the development of the Taylor polyno-
mials. The importance of the Taylor polynomials to the study of numerical analysis cannot
be overemphasized, and the following result is used repeatedly.

Suppose f € C"[a, b] and f*" exists on [a, b]. Let xo be a number in [a, b). For
every x in [a, b], there exists a number £(x) between xg and x with

fx) = Pu(x) + Ry (x),

where
H {n)
P = o)+ £ =)+ T 00 x gt gy T e
= f®(x0)
= g k! g (x - Ig]k
and
(n<1)
Ratey = LD .

Here P,(x) is called the nth Taylor polynomial for f about x(, and R,(x) is called
the truncation error (or remainder term) associated with P,(x). The number & (x) in the
truncation error R,(x) depends on the value of x at which the polynomial P, (x) is being
evaluated, so it is actually a function of the variable x. However, we should not expect to
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10 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

Brook Taylor (1685-1731) be able to explicitly determine the function & (x). Taylor’s Theorem simply ensures that
described this series in 1715 in such a function exists, and that its value lies between x and xy. In fact, one of the common
the paper Methodies problems in numerical methods is to try to determine a realistic bound for the value of
incrementorum direcia ef inversa. f{n+i](§ (x)) for values of x within some speciﬁed interval.

Specaat chées ol tho result, and The infinite series obtained by taking the limit of P, (x) as n —> oo is called the Taylor

likely the result itself, had been
previously known to Isaac
Newton, James Gregory, and
others,

series for f about xp. The term fruncation error in the Taylor polynomial refers to the
error involved in using a truncated (that is, finite) summation to approximate the sum of an
infinite series.

In the case xg = 0, the Taylor polynomial is often called a Maclaurin polynomial,
and the Taylor series is called a Maclaurin series.

Example 3 Let f(x) = cosx and xy = 0. Determine
(a) the second Taylor polynomial for f about xg; and
(b) the third Taylor polynomial for f about x;.
Solution Since f € C*(R), Taylor's Theorem can be applied for any n = 0. Also,

it

f'(x) = —sinx, f"(x) = —cosx, f"(x) =sinx, and f@(x)=rcosx,
s0

fO=1 fO=0 f'0)=-1, and f"(0)=0.
(a) Forn = 2 and x; = 0, we have

cosx = f(0) + f'(O)x + f—;ﬁo]xz + @“3

o 1og s
—1—2x +6x sin&(x),

where £(x) is some (generally unknown) number between 0 and x. (See Figure 1.8.)

Figure 1.8

y=cosx

y=Px) =1 -5

When x = 0.01, this becomes

1 1 10-6
¢0s0.01 = 1 — 5(0.01}2 + E({1.01)3 Sin§(0.01) = 0.99995 + —— sin£(0.01).
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1.2 Review of Calculus 1"

The approximation to cos 0.01 given by the Taylor polynomial is therefore 0.99995. The
truncation error, or remainder term, associated with this approximation is

10-6 i}
g Sin£(0.01) = 0.16 x 10~¢ sin£(0.01),

where the bar over the 6 in 0.16 is used to indicate that this digit repeats indefinitely.
Although we have no way of determining sin £(0.01), we know that all values of the sine
lie in the interval [—1, 1], so a bound for the error occurring if we use the approximation
0.99995 for the value of cos 0.01 is

|cos(0.01) — 0.99995| = 0.16 x 10~ %|sin £(0.01)| < 0.16 x 107°.
Hence the approximation 0.99995 matches at least the first five digits of cos 0.01, and

0.9999483 < 0.99995 — 1.6 x 107 < ¢co0s0.01
<0.99995 + 1.6 x 10~ < 0.9999517.

The error bound is much larger than the actual error. This is due in part to the poor
bound we used for |sin&(x)|. It is shown in Exercise 16 that for all values of x, we have
|sinx| < |x|. Since 0 < & < 0.01, we could have used the fact that [sin£(x)| < 0.0] in the
error formula, producing the bound 0.16 x 1075,

(b) Since f”'(0) = 0, the third Taylor polynomial with remainder term about x; = 0 has
no x* term. It is

1 1
cosx=1— 5x2+ ﬁx" cos & (x),

where 0 < £(x) < 0.01. The approximating polynomial remains the same, and the ap-
proximation is still 0.99995, but we now have much better accuracy assurance. Since
|cos & (x)| < 1 for all x, we have

1 4 —10
< —(0.0D* () =~ 4.2 x 107",
= 24( )'(D x

1 ”
‘ﬁx“cos&'(x)
So
lcos 0.01 —0.99995| < 4.2 x 101,

and

0.99994999958 = 0.99995 — 4.2 x 1071
< c0s0.01 < 0.99995 + 4.2 x 107" = 0.99995000042. ]
Example 3 illustrates the two basic objectives of numerical methods:

® Find an approximation to the solution of a given problem.

e Determine a bound for the accuracy of the approximation.

The second and third Taylor polynomials gave the same result for the first objective, but the
third Taylor polynomial gave a much better result for the second objective.
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12 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

lllustration We can also use the third Taylor polynomial and its remainder term found in Example 3 to
approximate _,fua " cos x dx. We have

(0.1
fu oosxdx— (1— —X ) dx—i——/o x*cosE(x) dx
0

1% 1 g
= [x—axs]n +ﬁ_/: x*cosE(x) dx

.1
=01- —(0 1+ 2% /ﬂ x*cosE(x) dx.

Therefore
0.1 1 "
f cosx dx ~0.1 - E(o.l)3 = 0.09983.
i}

A bound for the error in this approximation is determined from the integral of the Taylor
remainder term and the fact that |cos E(x)| < 1 forall x:

0.1
1 < %fo #lcos E(x)| dx

0.1 _
f x*cos E(x) dx
0

L it (155 P —-
Eﬁfo xdy= 120 =83x10"°

The true value of this integral is

0.1

cosx dx = sinx] =sin0.1 =~ 0.0998334 16647,
0

0.1
0

so the actual error for this approximation is 8.3314 x 10-%, which is within the error
bound. W

MATLAB can be used to obtain these results by first defining f(x) = cosx and the
second Taylor polynomial 72(x) = Ta(x) = 1 — jx? with

f = inline(’cos(x)?’,’x’)
T2 = inline(’1-0.5.%x.~ 27,'x?)

The next commands evaluate f at 0.01, T2 at 0.01 and compute the error in approximating
c0s(0.01) with the 7>(0.01).

yl = £(0.01), y2 = T2(0.01), errl = abs(yl-y2)
giving
y1 = 0.999950000416665, y2 = 0.999950000000000,
errl = 4.166652578518892¢ — 010

To obtain a graph similar to Figure 1.8 requires creating an M~file which can load more
than one command at a time. We need this in order to define both f(x) and T'2(x) if we
want to plot them both on the same graph,
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1.2 Review of Calculus 13

An M-file is created by selecting File on the MATLAB toolbar. Then select New
and Script. The three statements are entered and the result is saved as a file named
ourfunctionl. The M-file consists of the following commands:

function Y = ourfunctioni(x)
Y(:,1)=cos(x(:));
Y(:,2)=1-0.5.%x(:)."2;

From the worksheet, we need to enter the following command to create a reference to
the function M~file:

fh = @ourfunctioni
The response from MATLAB is
fh = @ourfunctionl
The graph shown in Figure 1.9 can then be created with the commands

fplot(fh, [-pi pil)
grid

Figure 1.9

We can also compute the integrals of f(x) and the Taylor polynomial 7>(x) on the
interval [0, 0.1] using MATLAB. We use the commands

gl = quad(’cos(x)’,0,0.1)
92 = quad(’1-0.5%x."27,0,0.1)

and MATLAB produces
gl = 0.099833416646828, g2 =0.099833333333333
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EXERCISE SET 12

1.

3

5

Show that the following equations have at least one solution in the given intervals.

8. xcosx—2x*+4+3x—=1=0, [02,03]and[L2,1.3]

b. (x—27-Inx=0, [l.2]and][e 4]

¢ 2rcos(Zx)—(x—2)'=0, [2,3]and[3,4]

d. x—(nx)*=0, [4,5]

Find intervals containing solutions to the following equations.

8 x—=37*=0

b, 4ri—e¢* =0

& »=2—-d4x+3=0

d. x*+4.001x% +4.002x + 1.101 =0

Show that the first derivatives of the following functions are zero at least once in the given intervals.

a.  flx)=1-e"+(e—1)sin((x/2)x), [0,1]

b. f(x)=(x—1)tanx +xsinxx, [0,1]

¢ f(x)=xsinmx—(x-2)lnx, [L1,2]

d. f(x)=(@E-—-2)sinxIn(x+2), [-1,3]

Find max, -, -, | f(x)| for the following functions and intervals,

a flx)=(Q2-e"+2x)/3, [0,1]

b.  flx)=(@4x-3)/(x*-2x), [0.5,1]

e f(x) =2xcos(2x) — (x —2)?, [2,4]

d. f(x)=14e =0 [1.2]

Let fi(x)=x3

a. Find the second Taylor polynomial P;{x)} about xy = 0.

b. Find R,(0.5) and the actual error when using P;(0.5) to approximate f(0.5).

¢.  Repeat (a) with x; = 1.

d. Repeat (b) for the polynomial found in (c).

Let f(x) =+/x + 1.

a. Find the third Taylor polynomial P;(x) about x3 = 0.

b. Use Ps(x) to approximate +/0.5 , +/0.75, +/1.25, and +/1.5.

¢. Determine the actual error of the approximations in (b).

Find the second Taylor polynomial P;(x) for the function f(x) = e* cosx about x; = 0.

a. Use P5(0.5) to approximate f(0.5). Find an upper bound for error | f(0.5) — P5(0.5)| using the
error formula, and compare it to the actual error.

b.  Find a bound for the error | f(x) — P:(x)| in using P:(x) to approximate f(x) on the interval
[0,1].

c. Approximate [} f(x)dx using [} Py(x) dx.

d. Find an upper bound for the error in (c) using _[al |Rs(x) dx|, and compare the bound to the actual
error,

Find the third Taylor polynomial P;(x) for the function f(x) = (x — 1) Inx about x, = 1,

a. Use P4(0.5) to approximate f(0.5). Find an upper bound for error | £(0.5) — P3(0.5)| using the
error formula, and compare it to the actual error.

b. Find a bound for the error | f(x) — Ps(x)| in using P;(x) to approximate f{x) on the interval
[0.5, 1.5].

c. Approximate [} f(x) dx using [, P;(x) dx.

d. Find an upper bound for the error in (c) using J::_'; |R3(x) dx|, and compare the bound to the
actual error.
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1.3 Round-0ff Error and Computer Arithmetic 15

Use the error term of a Taylor polynomial to estimate the error involved in using sinx =~ x to

approximate sin 1°.

Use a Taylor polynomial about 7 /4 to approximate cos42° to an accuracy of 1075,

Let f(x) = ¢*/* sin(x/3). Use MATLAB to determine the following.

a. The third Maclaurin polynomial P;(x).

b. A bound for the error | f(x) — Ps(x)| on [0, 1].

Let f(x) = In(x* + 2). Use MATLAB to determine the following.

a. The Taylor polynomial Ps(x) for f expanded about xy = 1.

b. The maximum error | f{x) — Py(x)|for0 =x < 1.

¢.  The Maclaurin polynomial Pi(x) for f:

d.  The maximum error | f(x) — Pi(x)| for0 < x < 1.

e. Does P;(0) approximate f(0) better than Py(l) approximates f(1)?

The polynomial P;(x) = 1~ x%isto be used to approximate f(x) = cosx in[—}, }]. Find a bound

for the maximum error.

The nth Taylor polynomial for a function f at x is sometimes referred to as the polynomial of degree

at most n that “best” approximates f near x,.

a. Explain why this description is accurate.

b. Find the quadratic polynomial that best approximates a function f near x, = 1 if the tangent
line at x; = 1 has equation y = 4x — 1, and if f"(1) = 6.

The error function defined by

erf(x}zj—??/ e dt
o

gives the probability that any one of a series of trials will lie within x units of the mean, assuming that
the trials have a normal distribution with mean 0 and standard deviation /2/2. This integral cannot
be evaluated in terms of elementary functions, so an approximating technique must be used.

a. Integrate the Maclaurin series for e 1o show that

_ 3 .02 (_,l)kxzk—l
oefix) = ﬁgtzu Dk

b. The error function can also be expressed in the form

2 e bkt
i Lo Tt RS . s
L EI-B-S---(EIH-I)

Verify that the two series agree for k = 1, 2, 3, and 4. [Hint: Use the Maclaurin series for e .

¢ Use the series in (a) to approximate erf(1) to within 1077,

d. Use the same number of terms used in (c) to approximate erf(1) with the series in (b).

e. Explain why difficulties occur using the series in (b) to approximate erf(x).

In Example 3 it is stated that x we have [sinx| < |x|. Use the following to verify this statement.

a. Showthatforallx = Owehave f(x) = x—sinx is non-decreasing, which implies thatsinx < x
with equality only when x = 0.

b. Reach the conclusion by using the fact that for all values of x, sin(—x) = —sinx.

. R

Round-Off Error and Computer Arithmetic

The arithmetic performed by a calculator or computer is different from the arithmetic that
we use in our algebra and calculus courses. From your past experience, you might expect
that we always have as true statements such things as 2+ 2 = 4,4-8 = 32, and (+/3)> = 3.
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16 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

In standard computational arithmetic we expect exact results for2+2 =4 and 4 - 8 = 32,
but we will not have precisely (+/3)2 = 3. To understand why this is true we must explore
the world of finite-digit arithmetic.

In our traditional mathematical world we permit numbers with an infinite number of
digits. The arithmetic we use in this world defines +/3 as that unique positive number which
when multiplied by itself produces the integer 3. In the computational world, however, each
representable number has only a fixed and finite number of digits. This means, for example,
that only rational numbers—and not even all these—can be represented exactly. Since +/3 is
not rational, it is given an approximate representation within the machine, a representation
whose square will not be precisely 3, although it will likely be sufficiently close to 3 to be
acceptable in most situations. In most cases, then, this machine representation and arithmetic
is satisfactory and passes without notice or concern, but at times problems arise because of
this discrepancy.

Error due to rounding should be The error that is produced when a calculator or computer is used to perform real-
expecied whenever computations  number calculations is called round-off error. It occurs because the arithmetic performed
are performed using numbers that  in a machine involves numbers with only a finite number of digits, with the result that
are not powers of 2. Keeping this  ¢aleulations are performed with only approximate representations of the actual numbers.
error under control is extremely 1y o yynical computer, only a relatively small subset of the real number system is used for
SHepanant Whes fue cumper ol the representation of all the real numbers. This subset contains only rational numbers, both
caleulations is large. L 3 5 J 3 4

. e positive and negative, and stores the fractional part, together with an exponential part.

Binary Machine Numbers

In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a report called
Binary Floating Point Arithmetic Standard 754-1985. An updated version was published
in 2008 as [EEE 754-2008. This provides standards for binary and decimal floating point
numbers, formats for data interchange, algorithms for rounding arithmetic operations, and
for the handling of exceptions. Formats are specified for single, double, and extended
precisions, and these standards are generally followed by all microcomputer manufacturers
using floating-point hardware.

For example, double precision real numbers require a 64-bit (binary digit) representa-
tion. The first bit is a sign indicator, denoted s, This is followed by an 11-bit exponent, ¢,
called the characteristic, and a 52-bit binary fraction, f, called the mantissa. The base for
the exponent is 2.

The normalized form for the nonzero double precision numbers has0 < ¢ < 2''—1 =
2047. Since c is positive, a bias of 1023 is subtracted from ¢ to give an actual exponent
in the interval (—1023, 1024). This permits adequate representation of numbers with both
large and small magnitude. The first bit of the fractional part of a number is assumed to
be 1 and is not stored in order to give one additional bit of precision to the representation,
Since 53 binary digits correspond to between 15 and 16 decimal digits, we can assume that
a number represented using this system has at least 15 decimal digits of precision. Thus,
numbers represented in normalized double precision have the form

(_l)szc—lﬁﬂ(] 1E f)-

lllustration Consider the machine number
0 10000000011 1011100100010000000000000000000000000000000000000000.

The leftmost bit is s = 0, which indicates that the number is positive. The next 11 bits,
10000000011, give the characteristic and are equivalent to the decimal number

c=1-240-2+..-+0-22+1-2"+1-2°=1024 + 2+ 1 = 1027.
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1.3 Round-Off Error and Computer Arithmetic 17

The exponential part of the number is, therefore, 21%27-1023 — 24 The final 52 bits specify
that the mantissa is

! 13 ¢ 1\ 1\® 1\ 12
r=i(g) +1(5) +(3) + (@) +(3) (@)
As a consequence, this machine number precisely represents the decimal number

L4 4 a1 i
__1y§ne—1023 — (—1)" . pl027-1023 e S e PR P - s
TR <2 (1+(2+8+16+32+256+4[}96))

= 27.56640625.
However, the next smallest machine number is
0 10000000011 10111001000011111111 11110112122 11001 2020102 1011111111,
and the next largest machine number is
0 10000000011 1011100100010000000000000000000000000000000000000001.

This means that our original machine number represents not only 27.56640625, but also half
of the real numbers that are between 27.56640625 and the next smallest machine number,
as well as half the numbers between 27.56640625 and the next largest machine number. To
be precise, it represents any real number in the interval

[27.5664062499999982236431605997495353221893310546875,
27.5664062500000017763568394002504646778106689453125). [

The smallest normalized positive number that can be represented has s = 0,¢c = 1,
and f = 0, and is equivalent to the decimal number

271022, (1 4 0) & 0.225 x 107,

The largest normalized positive number that can be represented has s = 0, ¢ = 2046, and
f =1-—2"% and is equivalent to the decimal number

21023 (1 4 (1 —27%)) = 0.17977 x 10°%.

Numbers occurring in calculations that have too small a magnitude to be represented result
in underflow, and are generally set to 0 with computations continuing. However, numbers
occurring in calculations that have too large a magnitude to be represented result in overflow
and typically cause the computations to stop. Note that there are two representations for
the number zero; a positive 0 when s = 0, ¢ =0, and f = 0 and a negative Owhens = 1,
c= 0, and f =

Decimal Machine Numbers
The use of binary digits tends to complicate the computational problems that occur when a
finite collection of machine numbers is used to represent all the real numbers. To examine
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18 CHAPTER 1 =

The error that results from
replacing a number with its
floating-point form is called
round-off error regardless of
whether the rounding or
chopping method is used.

Example 1

The relative error is generally a
better measure of accuracy than
the absolute error because it takes
into consideration the size of the
number being approximated.

Example 2
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these problems, we now assume, for simplicity, that machine numbers are represented in
the normalized decimal form

+0.dydy...dp x 10", 1<d; <9, 0=<d =<9

foreachi = 2, ... , k. We call numbers of this form k-digit decimal machine numbers.
Any positive real number within numerical range of the machine can be normalized to
achieve the form

y= O.d]d?_ arlaw dkd&‘._ldh__z o 3010

The floating-point form of y, denoted by fI(y), is obtained by terminating the mantissa
of y at k decimal digits. There are two ways of performing the termination. One method,
called chopping, is to simply chop off the digits dy. ;> ... to obtain

fI() = 0.dids ... dy x 10"

The other method of terminating the mantissa of y at k decimal points is called round-
ing. If the k + 1st digit is smaller than 5, then the result is the same as chopping. If the £+ 1st
digit is 5 or greater, then 1 is added to the kth digit and the resulting number is chopped.
As a consequence, rounding can be accomplished by simply adding 5 x 10"~*+!) {0 y and
then chopping the result to obtain fI(y). Note that when rounding up, the exponent n could
increase by 1. In summary, when rounding we add one to d; to obtain fI(y) whenever
dy.; = 5, that is, we round up; when dy.| < 5, we chop off all but the first k digits, so we
round down.

The next examples illustrate floating-point arithmetic when the number of digits being
retained is quite small. Although the floating-point arithmetic that is performed on a cal-
culator or computer will retain many more digits, the problems this arithmetic can cause
are essentially the same regardless of the number of digits. Retaining more digits simply
postpones the awareness of the situation.

Determine the five-digit (a) chopping and (b) rounding values of the irrational number .

Solution The number 7 has an infinite decimal expansion of the form 7w = 3.14159265. ...
Written in normalized decimal form, we have

m =0.314159265... % 10'.

(a) The floating-point form of 7 using five-digit chopping is
() = 0.31415 x 10" = 3.1415.

(b) The sixth digit of the decimal expansion of  is a 9, so the floating-point form of &
using five-digit rounding is

fl(r) = (0.31415 + 0.00001) x 10' = 3.1416. ]

There are two common methods for measuring approximation errors.
The approximation p* to p has absolute error | p— p*| and relative error |p— p*|/| pl,
provided that p # 0.

Determine the absolute and relative errors when approximating p by p* when
(a) p=3.000and p* = 3.100;

(b) p = 0.003000 and p* = 0.003100;
(e) p=3000and p* =3100.
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1.3 Round-Off Error and Computer Arithmetic 19

Solution First we need to write these numbers in standard floating-point form:

(a) For p =0.3000x 10" and p* = 0.3100x 10" the absolute erroris 0.1, and the relative
error is 0.3333 x 10~L,

(b) For p = 0.3000 x 10~ and p* = 0.3100 x 10~ the absolute error is 0.1 x 107%,
and the relative erroris 0.3333 x 107!,

(¢) For p = 03000 x 10* and p* = 0.3100 x 10°, the absolute error is 0.1 x 10%, and
the relative error is again 0.3333 x 107,

We often cannot find an accurate  This example shows that the same relative error, 0.33 33 x 107, occurs for widely varying

value for the true error in an absolute errors. As a measure of accuracy, the absolute error can be misleading and the
approximation, Instead we finda  relative error more meaningful, because the relative error takes into consideration the size
bound for the error, which gives of the value. ™

us a “worst-case” error.

Finite-Digit Arithmetic

The arithmetic operations of addition, subtraction, multiplication, and division performed
by a computer on floating-point numbers also introduce error. These arithmetic operations
involve manipulating binary digits by various shifting and logical operations, but the actual
mechanics of the arithmetic are not pertinent to our discussion. To illustrate the prob-
lems that can occur, we simulate this finite-digit arithmetic by first performing, at each
stage in a calculation, the appropriate operation using exact arithmetic on the floating-point
representations of the numbers. We then convert the result to decimal machine-number
representation. The most common round-off error producing arithmetic operation involves
the subtraction of nearly equal numbers.

Example 3 Use four-digit decimal chopping arithmetic to simulate the problem of performing the
computer operation 7 — 5.

Solution The floating-point representations of these numbers are
fl(r) = 03141 x 10 and fi (?) =0.3142 x 10"
Performing the exact arithmetic on the floating-point numbers gives
71w - 11 (%) = ~00001 x10!,
which converts to the floating-point approximation of this calculation:
p'=fl (fl(rr) - fi (27—2)) = —0.1000 x 1072
Although the relative errors using the floating-point representations for 7 and 27—2 are small,

‘Jr—ﬂ(n')‘ 2-51(3)
e 22

3

= 0.0002 and

the relative error produced by subtracting the nearly equal numbers 7 and 2:,—2 is about 700
times as large:

(=—3) -2

@3

~ 0.2092.
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20 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

Rounding arithmetic in MATLAB involves the use of the function round. This function
rounds to the nearest whole number and the function f£ix chops off the fractional part.
Suppose we define the numbers x1, x2, x3, and x4 with the MATLAB command
x1=-123.4,x2=-123.5,x3=123.4,x4=123.5

MATLAB responds with,

x1 = —1.234000000000000e + 002
x2 = —1.235000000000000e + 002
x3 = 1.234000000000000e + 002
x4 = 1.235000000000000e + 002

Invoking the commands round and £ix gives, for round,
ans = —123, ans=—124, ans= 123, ans=124
and, for fix,
ans=—123, ans=-123, ans=123, ans=123

Exercise 12 illustrates how these functions can be used to perform rounding and chopping
arithmetic to a specific number of digits.

EXERCISE SET 13

1. Compute the absolute error and relative error in approximations of p by p°.

a. p=n‘,p’=¥ b. p=m, p*=31416
c. p=ep'=2718 d. p=+2,p =1414
e. p=e p*=22000 f. p=107, p* = 1400
g- p =8 p"=39900 h. p=9! p* = /187 (9/e)’

2. Perform the following computations (i) exactly, (ii) using three-digit chopping arithmetic, and
(iii) using three-digit rounding arithmetic. (iv) Compute the relative errors in (ii) and (iii).

4 1 41

- 3t3 b 33
1 3 3 d 1 3 3
3 1) ~ \iTn)"®

3. Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error
and relative error with the exact value determined to at least five digits.

a 13340921 b 133 —0.499
¢ (121 -0327) — 119 d. (121 - 119) — 0327
13 _ 6
i £ =T0kF6=
% —54 )

H

(=

¢ (5)() v 5
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1.3 Round-0ff Error and Computer Arithmetic 2

Repeat Exercise 3 using three-digit chopping arithmetic.
Repeat Exercise 3 using four-digit rounding arithmetic.
6.  Repeat Exercise 3 using four-digit chopping arithmetic.

7. The first three nonzero terms of the Maclaurin series for the arctan x are x — {x” + {x°. Compute the
absolute error and relative error in the following approximations of 7 using the polynomial in place
of the arctan x:

o on()ema()] s een(()-oeem(i)

8.  The two-by-two linear system
ax+by=e,
cx +dy = f,
where a, b, ¢, d, e, f are given, can be solved for x and y as follows:

c

sel m=a, provided a #0;

dy=d —mb;

fi=f—me
=4,
T’

in =00
a

Solve the following linear systems using four-digit rounding arithmetic.
a.  1.130x — 6.990y = 14.20 b. 1.013x — 6.099y = 14.22
8.110x + 12.20y = —0.1370 —18.11x + 1122y = —0.1376

9. Suppose the points (xp, y5) and (x;, y;) are on a straight line with y; # y,. Two formulas are available
to find the x-intercept of the line:

g DTN o my— (xi —xn))m_
=X -

a.  Show that both formulas are algebraically correct.

b.  Use the data (xp, yo) = (1.31, 3.24) and (x;, y;) = (1.93, 4.76) and three-digit rounding arith-
metic to compute the x-intercept both ways. Which method is better, and why?

10.  The Taylor polynomial of degree n for f(x) = e is 3" , x'/i!. Use the Taylor polynomial of degree
nine and three-digit chopping arithmetic to find an approximation to e~ by each of the following
methods.

9 : ; 1 1

= (=3 (—=1)5 b et=—f —

5 = € .

a nY _Z il e oS

9
i=0 =0

An approximate value of e correct to three digits is 6.74 x 107>, Which formula, (a) or (b), gives
the most accuracy, and why?

11. A rectangular parallelepiped has sides 3 cm, 4 ¢m, and 5 cm, measured to the nearest centimeter.
a.  What are the best upper and lower bounds for the volume of this parallelepiped?
b.  What are the best upper and lower bounds for the surface area?
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22 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

12.  The following MATLAB M-file rounds or chops a number x to ¢ digits where md = 1 for rounding
and md = 0 for chopping.

function [res] = CHIP(rnd,t,x)
% This program is used to round or chop a number x to a specific number t
% of digits.
if x ==0

w=0;
else

ee = fix(logl0(abs(x)));

if abs(x) > 1

ag = ga + 1;

end;
if rnd == 1
w = round(x*10~(t-ee))*10" (ee-t);
else
w = fix(x*10"(t-ee))*10"(ee-t);
end;
end;
res = w ;

Verify that the procedure works for the following values.
a. x=124031,r=5 b. x=124036,t=5
c. x=-0.00653,r=2 d. x=-0.00656,r =2

13. The binomial coefficient
my\ _ m!
k) kl(m=k)!

describes the number of ways of choosing a subset of k objects from a set of m elements.
4. Suppose decimal machine numbers are of the form

H0.dydadsds x 107, withl<d; <9, 0=<d <9, ifi=234 and |n| =<15.

What is the largest value of m for which the binomial coefficient () can be computed for all &
by the definition without causing overflow?

b.  Show that (7) can also be computed by

m =(ﬂ) m—1 m—k+1
k k/\Nk—1 1 ;
c.  What is the largest value of m for which the binomial coefficient (‘;) can be computed by the
formula in (b) without causing overflow?

d. Use the equation in (b) and four-digit chopping arithmetic to compute the number of possible
S-card hands in a 52-card deck. Compute the actual and relative errors.

- 1.4 Errors in Scientific Computation

In the previous section we saw how computational devices represent and manipulate num-
bers using finite-digit arithmetic. We now examine how the problems with this arithmetic
can compound and look at ways to arrange arithmetic calculations to reduce this inaccuracy.
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1.4 Errors in Scientific Computation 23

The loss of accuracy due to round-off error can often be avoided by a careful sequencing
of operations or a reformulation of the problem. This is most easily described by considering
a common computational problem.

Illustration  The quadratic formula states that the roots of ax® +bx +¢ =0, when a # 0, are

—b + /b2 —4ac —b — /BT — 4ac
Fi=—t Y 7 and = — 7 (.1
2a 2a
Consider this formula applied to the equation x? + 62.10x 4+ 1 = 0, whose roots are

approximately
x; = —0.01610723 and x; = —62.08390.

We will again use four-digit rounding arithmetic in the calculations to determine the root. In
this equation, b* is much larger than 4ac, so the numerator in the calculation for x; involves
the subtraction of nearly equal numbers. Because

Vb2 — dac = 1/(62.10)? — (4.000)(1.000)(1.000)
= +/3856. — 4.000 = +/3852. = 62.06,

we have
—62.104+62.06  —0.04000
G0 =350 = 2000 - 002000
a poor approximation to x; = —0.01611, with the large relative error
|—0.01611 + 0.02000| 1
~ 24 x 107,
I—0.01611| X

On the other hand, the calculation for x; involves the addition of the nearly equal numbers
—b and —+/b* — 4ac. This presents no problem because

-62.10 - 62.06 _ —124.2

fl(xz) = = = Sop0 = 6210
has the small relative error
|— 62.08 + 62.10] »
—_————— A 32 x 107,
|- 62.08| *

To obtain a more accurate four-digit rounding approximation for x,, we change the form of
the quadratic formula by rationalizing the numerator:

X_-b+¢b2—4ac —b—«B —dac) b — (¥ —dac)
== 2a —b—B —4ac) 2a(—b— /b —dac)’

The roots x; and x» of a general  Which simplifies to an alternate quadratic formula
quadratic equation are related to %
the coefficients by the fact that = — (1.2)

+ /b2 —dac’

- +x2=_g A xm:g_ Using Eq. (1.2) gives
—2.000 —2.000
This is a special case of Vidta's fl(x)) = = = =0.01610,
formula for the coefficients of 62.10 + 62.06 1242
ol ynoraials: which has the small relative error 6.2 x 1077,
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24 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

The rationalization technique can also be applied to give the following alternative

quadratic formula for x,:
—2c
X = 1.3

2T b — Vb —dac a2

This is the form to use if b is a negative number. In the lllustration, however, the mistaken use

of this formula for x; would result in not only the subtraction of nearly equal numbers, but

also the division by the small result of this subtraction. The inaccuracy that this combination

produces,
—2c —2.000 —2.000
) = e — 62.10 - 62.06 — 0.04000 — 0%
has the large relative error 1.9 x 107, O
Nested Arithmetic

Example 1 Evaluate f(x) = x> — 6.1x% 4+ 3.2x + 1.5 at x = 4.71 using three-digit arithmetic.
Solution Table 1.1 gives the intermediate results in the calculations.

Tﬂble 11 x Iz 13 6.112 3.2x
Exact 471 22.1841 104.487111 135.32301 15.072
Three-digit (chopping) 471 22.1 104, 134, 15.0
Three-digit (rounding) 4,71 222 105. 135. 15.1
Remember that chopping (or To illustrate the calculations, let us first look at those involved with finding x* using
rounding) is performed after three-digit rounding arithmetic.
each calculation. First we find

=471 = 22.1841, which rounds to 22.2.
Then we use this value of x2 to find

x> =x%.x=1222-471 =104.562, which rounds to 105.

6.1x% = 6.1(22.2) = 135.42, which rounds to 135,
and
3.2x =3.2(4.71) = 15.072, which rounds to 15.1.

Using finite-digit arithmetic, the way in which we add the results can affect the final
result. Suppose that we add left to right. Then for chopping arithmetic we have

Three-digit (chopping): f(4.71) = ((104. — 134.) + 15.0) + 1.5 = —13.5,
and for rounding arithmetic we have

Three-digit (rounding): £ (4.71) = ((105. — 135.) + 15.1) + 1.5 = —13.4.
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1.4 Errors in Scientific Computation 25

(You should carefully verify these results to be sure that your notion of finite-digit arithmetic
is correct.) Note that the three-digit chopping values simply retain the leading three digits,
with no rounding involved, and differ from the three-digit rounding values. The exact result
of the evaluation is

Exact:  f(4.71) = 104.487111 — 135.32301 + 15.072 4+ 1.5 = —14.263899,

so the relative errors for the three-digit methods are

 [—14.263899 + 13.5
v | 2D,
Chopping: ‘ 14263899 ‘ 0.05, and
_14, :
Rocnding: ‘—1 A9+ 134 ‘ ~ 0.06. .

—14.263899
Illustration  As an alternative approach, the polynomial f(x) in Example 1 can be written in a nested
manner as
fx) =x>—6.1x2+32x + 1.5 = ((x — 6.1)x + 3.2)x + L.5.
Using three-digit chopping arithmetic now produces
fAT1) =((4.71 —6.1)4.71 +3.2)4.71 + 1.5 = ((—1.39)(4.71) + 3.2)4.71 4+ 1.5
=(—654+32471415=(-334)471+15=-1574+15=-14.2

In a similar manner, we now obtain a three-digit rounding answer of —14.3. The new relative

errors are
is . .. |—14.263899 + 14.2 ;
Three-digit (chopping): | W‘ = 0.0045;
_— .o |—14.263899 + 143
Three-digit (rounding): —14.263899 ‘ ~ 0.0025.

Nesting has reduced the relative error for the chopping approximation to less than 10%
of that obtained initially. For the rounding approximation, the improvement has been even
more dramatic; the error in this case has been reduced by more than 95%. = |

Characterizing Algorithms

We will be considering a variety of approximation problems throughout the text, and in
each case we need to determine methods that produce dependably accurate results for a
wide class of problems. Because of the differing ways in which the approximation methods
are derived, we need a variety of conditions to categorize their accuracy. Not all of these
conditions will be appropriate for any particular problem.

One criterion we will impose, whenever possible, is that of stability. A method is
called stable if small changes in the initial data produce correspondingly small changes
in the final results. When it is possible to have small changes in the initial data producing
large changes in the final results, the method is unstable. Some methods are stable only for
certain choices of initial data. These methods are called conditionally stable. We attempt
to characterize stability properties whenever possible.

One of the most important topics affecting the stability of a method is the way in which
the round-off error grows as the method is successively applied. Suppose an error with
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26 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

magnitude Ey > 0is introduced at some stage in the calculations and that the magnitude of
the error after n subsequent operations is E,. There are two distinct cases that often arise
in practice.

o If a constant C exists independent of n, with E,, = CnEy, the growth of error is linear.

e If a constant C > 1 exists independent of n, with E, = C"E,, the growth of error is
exponential.

It would be unlikely to have E, = C"E,, with C < 1, because this implies that the error
tends to zero.

Linear growth of error is usually unavoidable and, when C and Ej are small, the
results are generally acceptable. Methods having exponential growth of error should be
avoided because the term C" becomes large for even relatively small values of n and Ej.
Consequently, a method that exhibits linear error growth is stable, while one exhibiting
exponential error growth is unstable. (See Figure 1.10.)

Figure 1.10

E, A
L]
Unstable exponential error growth

o E,=CE
.
~ , * Stable linear error growth
. s " E,= CnE,
| B *
Est °
1 & 3 &85 '8 "

Rates of Convergence

Iterative techniques often involve sequences, and the section concludes with a brief dis-
cussion of some terminology used to describe the rate at which sequences converge when
employing a numerical technique. In general, we would like to choose techniques that con-
verge as rapidly as possible. The following definition is used to compare the convergence
rates of various methods.

Suppose that {e,]32, is a sequence that converges to a number « as n becomes large.

If positive constants p and K exist with
K
ot —ay| = == for all large values of n,
n

then we say that {&,} converges to ¢ with rate, or order, of convergence O (1/n”) (read
“big oh of 1/n”"). This is indicated by writing &, = & + O(1/n") and stated as “a, — o
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There are numerous other ways
of describing the growth of
sequences and functions, some of
which require bounds both above
and below the sequence or
function under consideration.
Any good book that analyzes
algorithms, for example [CLRS],
will include this information,

Example 2

Table 1.2

1.4 Errors in Scientific Computation 21

with rate of convergence 1/n”" We are generally interested in the largest value of p for
which e, =a + O(1/nP).

We also use the “big oh” notation to describe how some divergent sequences grow as
n becomes large. If positive constants p and K exist with

|| < Kn”, for all large values of n,

then we say that {c, } goes to oo with rate, or order, O(n”). In the case of a sequence
that becomes infinite, we are interested in the smallest value of p for which a, is O(n?).

The “big oh™ definition for sequences can be extended to incorporate more general
sequences, but the definition as presented here is sufficient for our purposes.

Suppose that, forn = 1,

n+1 and &n=n+3

o, =

n? nd °

Both of the sequences converge to 0, but the sequence {¢,} converges much faster than the
sequence {a, }. Using five-digit rounding arithmetic, we have the values shown in Table 1.2.
Determine rates of convergence for these two sequences.

n 1 2 3 4 5 6 7

o, 2.00000  0.75000 044444 0.31250 0.24000 0.19444 0.16327
a, 4.00000  0.62500  0.22222 0.10938 0.064000  0.041667 0.029155

Solution Define the sequences B, = 1/n and B, = 1/n?. Then

n+l n+n 1
Iﬂn_OI: 2 = m =25=2ﬂn
and
n+3 n+3n 1
la, — 0] = ! = 3 =4'§=4ﬁn~

Hence the rate of convergence of {@,} to 0 is similar to the convergence of {1/n} to 0,
whereas {&,} converges to 0 at a rate similar to the more rapidly convergent sequence
{1/n?}. We express this by writing

1 1
a,,=0+0(v-) and c‘i,,=0+0(w5). [ |
n n

The “big oh” notation is also used to describe the rate of convergence of functions,
particularly when the independent variable approaches 0.

Suppose that F is a function that converges to a number L as & goes to 0. If positive
constants p and K exist with

|F(h) —L| < Kh",  ash—0,

then F(h) converges to L with rate, or order, of convergence O(h”). This is written as
F(h) = L + O(h”) and stated as “F (h) — L with rate of convergence 2%
We are generally interested in the largest value of p for which F(h) = L + O(h¥).
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EXERCISE SET 14

1.

34

7.

(i) Use four-digit rounding arithmetic and Eqs. (1.2) and (1.3) to find the most accurate approximations
10 the roots of the following quadratic equations. (ii) Compute the absolute errors and relative errors
for these approximations.

1, 123 I 1., 123 I
a. ix Tx + e 0 b. 3).' 3 <= 0
. 1.002x% —11.01x +0.01265=0 d.  1.002x% 4+ 11.01x 4+ 0.01265=0

Repeat Exercise 1 using four-digit chopping arithmetic.
Let f(x) = 1.013x% — 5.262x% — 0.01732x% + 0.8389x — 1.912.
a. Evaluate f(2.279) by first calculating (2.279)*, (2.279)%, (2.279)*, and (2.279)° using four-digit
rounding arithmetic.
b. Evaluate f(2.279) using the formula
Flx) = (((1.013x* = 5.262)x — 0.01732)x + 0.8389)x — 1.912
and four-digit rounding arithmetic.
¢. Compute the absolute and relative errors in (a) and (b).

Repeat Exercise 3 using four-digit chopping arithmetic.
The fifth Maclaurin polynomials for ¢* and e** are

Pyx) = ((((%x+§)x+;)x+2)x+2)x+i
Ps(x)=((((-%x+§)x—;)x+2)x—2)x+1

a. Approximate e ** using P(0.49) and four-digit rounding arithmetic.
Compute the absolute and relative error for the approximation in (a).

¢. Approximate e ** using 1/ Ps(0.49) and four-digit rounding arithmetic.
d. Compute the absolute and relative errors for the approximation in (c).

and

4

a. Show that the polynomial nesting technique described in the Illustration on page 25 can also be
applied to the evaluation of

Fx) = 1.0le* —4.62¢™ — 311> + 12.2¢" — 1.99.

b.  Use three-digit rounding arithmetic, the assumption that ' ** = 4.62, and the fact that "™ =
(e"%)" to evaluate f(1.53) as given in (a).
c. Redo the calculation in (b) by first nesting the calculations.
d. Compare the approximations in (b) and (c) to the true three-digit result £(1.53) = -7.61.
Use three-digit chopping arithmetic to compute the sum /%, 1/ firstby ! + 1 4+ 4 ;L. and
then by &5 + &; + -+ -+ 1. Which method is more accurate, and why?
The Maclaurin series for the arctangent function converges for —1 < x < 1 and is given by
x’.n.‘.l'—l

o o - i+t
m‘—,lifﬂ,ﬁ(”)“,lfﬂo§( D @D

a. Use the fact that tanw /4 = 1 to determine the number of terms of the series that need to be
summed to ensure that |4 P,(1) — x| < 107,

b. The C programming language requires the value of i to be within 10~'". How many terms of
the series would we need to sum to obtain this degree of accuracy?
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10.

11.

12.

13.

15 Computer Software 29

The number ¢ is defined by e = 577 1/n!, where n! = n(n — 1)--.2. 1, forn # 0 and 0! = 1.
(i) Use four-digit chopping arithmetic to compute the following approximations to e. (ii) Compute
absolute and relative errors for these approximations.

1 21
= X b 2 G

n=0 =0
0 10 1

c — d. =

E n! Jg (10— j)!
Find the rates of convergence of the following sequences as n — oo.

1 1

a. Emsin(—):[] b. limsin(—1)=0

b0 n Bl n=

1\\2

¢ lim (sm(;)) =0 d. lim{ln{n + 1) —Iln{(n)] =0

Find the rates of convergence of the following functions as h — 0.

. sinh —hcosh 1 —eh
., lim — =0 i S
a h=0 h b =0 h i
g HeeE g & Hal=t% o
k0 h h—0 h

a. How many multiplications and additions are required to determine a sum of the form

L i

>3 ab?

i=l j=1
b. Modify the sumin (a) to an equivalent form that reduces the number of computations.
The sequence {F,} described by F; = 1, F, = 1, and F,,; = F, + F,,y, if n > 0, is called
a Fibonacci sequence. Its terms occur naturally in many botanical species, particularly those with
petals or scales arranged in the form of a logarithmic spiral. Consider the sequence {x,}, where
x, = F,;1/F,. Assuming that lim, , - x, = x exists, show that x is the golden ratio (1 + +/5)/2.

Computer Software

Computer software packages for approximating the numerical solutions to problems are
available in many forms. On our website for the book

http://www.math.ysu.edu/~faires/Numerical-Methods/

we have provided programs written in C, FORTRAN, Maple, Mathematica, MATLAB,
and Pascal, as well as JAVA applets. These can be used to solve the problems given in the
examples and exercises, and will give satisfactory results for most problems that you may
need to solve. However, they are what we call special-purpose programs. We use this term
to distinguish these programs from those available in the standard mathematical subroutine
libraries. The programs in these packages will be called general purpose.

General Purpose Algorithms

The programs in general-purpose software packages differ in their intent from the algo-
rithms and programs provided with this book. General-purpose software packages consider
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