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2. The initial-value problem

y = — y + 1 — j , for 1 < t < 2, with y(l) = 1

has the exact solution y(f ) = 1 4- ( el ~‘ — l )/-1.
a. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10~3 to find wi and w^ .Compare

the approximate solutions to the actual values.

b. Use the Adams Variable-Step-Size Predictor-Corrector method with tolerance TOL = 0.002

and starting values from the Runge-Kutta method of order 4 to find *v4 and w5. Compare the
approximate solutions to the actual values.

3. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10 4 to approximate the solution to the

following initial-value problems.

a. y' = for 1 < t < 1.2, with y( l ) = 1, hmax = 0.05, and hmin = 0.02.

b. y = sinf + e~\for 0 < t < 1, with y(0) = 0, hmax = 0.25, and hmin = 0.02.

c. y' — ( y2 + y )t ~l ,for 1 < t < 3, with y( l ) = —2, hmax — 0.5, and hmin — 0.02.

d. y = —ty + 4ty~\for 0 < t < 1, with y(0) = 1, hmax = 0.2, and hmin = 0.01.

4. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10 6, hmax = 0.5, and hmin = 0.05
to approximate the solutions to the following initial-value problems.Compare the results to the actual

values.

a. y = j - for 1 < t < 4, with y(l) = 1; actual solution y( t ) = f /( l 4- Inf ).

b. y = 1 + j + , for 1 < t < 3, with y( l ) = 0; actual solution y{t ) = t tan(lnf ).

c. y = — l )(>-l-3),for 0 < f < 3, with >(0) = -2; actual solution .y(/) = —3+2(1+e-2,)
_

l.
d. y = (f +2/

3)y3- f)\ for 0 < t < 2, with y(0) = actual solution y( t ) = (3+2f
2 +6«/* )“

,
/2.

5. Use the Adams Variable-Step-Size Predictor-Corrector method with TOL = 10 4 to approximate the

solutions to the initial-value problems in Exercise 3.

6. Use the Adams Variable-Step-Size Predictor-Corrector method with tolerance TOL = 10~6, hmax =
0.5, and hmin = 0.02 to approximate the solutions to the initial-value problems in Exercise 4.

7. An electrical circuit consists of a capacitor of constant capacitance C = 1.1 farads in series with a
resistor of constant resistance Ro = 2.1 ohms. A voltage E( t ) = 110sin / is applied at time t = 0.
When the resistor heats up, the resistance becomes a function of the current i,

R( t ) = R0 -f ki , where k = 0.9,

and the differential equation for i becomes

/
1 +

2* .\ d«
+

_1__ .
=

\ dS

y R{) ) dt RQC R0C dt

Find the current i after 2 s, assuming i (0) = 0.

5.7 Methods for Systems of Equations

The most common application of numerical methods for approximating the solution of
initial-value problems concerns not a single problem, but a linked system of differential

equations. Why, then, have we spent the majority of this chapter considering the solution

of a single equation? The answer is simple: to approximate the solution of a system of
initial-value problems, we successively apply the techniques that we used to solve problems

involving a single equation. As is so often the case in mathematics, the key to the methods
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5.7 Methods for Systems of Equations 215

for systems can be found by examining the easier problem and then logically modifying it
to treat the more complicated situation.

An mth-order system of first-order initial-value problems has the form

du i

dt

du2

It

f \ (*, U\,U 2,

^
**1» **2 » • • • » **m)»

for a < t < b , with the initial conditions

u\ (a ) = au u2(a ) = a2 , . . . . um (a ) = otm.

The object is to find m functions u\t u2 , . . . , um that satisfy the system of differential
equations together with all the initial conditions.

Methods to solve systems of first-order differential equations are generalizations of the
methods for a single first-order equation presented earlier in this chapter. For example , the
classical Runge-Kutta method of order 4 given by

w0 = cr,

*i = hfOh wi)»

k2 = hf ^ti -I- w, +

*3 = hf \
^

tj + Wi + ,

*4 = hffa+uWi + *3),

and

w,+1 = w, + ~ [k\ + 2k2 + 2ki +*4],
o

for each i = 0, 1, . . . , N — 1 , is used to solve the first-order initial-value problem

y'
= f ( t , y ) , for a < t < b , with y (a ) = or.

It is generalized for systems as follows.
Let an integer N > 0 be chosen and set h = (b — a ) / N . Partition the interval [a , b ]

into N subintervals with the mesh points

t j = a + jh for each j = 0, 1, . . . , N .

Use the notation w y for each j = 0, 1 , . . . , N a n d i = 1 , 2, . . . , m to denote an
approximation to!*, (*,); that is, w y approximates the ith solution U j ( t ) of the system at the
y'th mesh point t j . For the initial conditions, set

wi ,0 = oi . W2,O = C*2, . . . . wm >0 = ofm .

Figure 5.4 gives an illustration of this notation .
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216 CHAPTER 5 Numerical Solution of Initial-Value Problems

Figure 5.4
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Suppose that the values w2 jt • • , wm. j have been computed. We obtain w\ j+\,
W 2 j+u - • •» wm, j+i by first calculatings for each i = 1, 2,..., m,

k\ j = hf i ( t j t W\t j% W 2J Wmj ),

and then finding, for each i,

, h 1 , 1 , 1 , \
*2.» = hf i i t j + -,Wij + -k\t i tW 2, j +

2*1.2. • • • » Wm, j +
2*1.1« ) •

We next determine all the terms

*3.i = hf i ^ t j + W\ j + “*2.1, w2, j +
2^2.2. • • • .WmJ + -jk2 ,m

and, finally, calculate all the terms

*4 ,i = hfi (tj + h,W\ j +*3.1."2.;+*3.2. • • • ."m./ + *3.m )-
Combining these values gives

The program RK04SY57

implements the

Rungc-Kutta method of

order 4 for systems.

"i,y +1 = wiJ +
^
[*l,i + 2*2.I + < + *4.i]

for each i = 1, 2, ... m.
Note that all the values *1.1,*1.2* - - • .*i.m must be computed before any of the terms

of the form *2,/ can be determined. In general, each */.1 * */.2 » • • • .*/.m must be computed
before any of the expressions */+ itl.

Example 1 Kirchhoff’s Law states that the sum of all instantaneous voltage changes around a closed

electrical circuit is zero. This implies that the current, / (/ ), in a closed circuit containing a
resistance of R ohms, a capacitance of C farads, an inductance of L henrys, and a voltage
source of E ( t ) volts must satisfy the equation

LI\t ) + RI (t )+ ^ j I (t )dt = E(t ).

The currents I\ ( t ) and l2 {t ) in the left and right loops, respectively, of the circuit shown in
Figure 5.5 arc the solutions to the system of equations

2/,(0+ 6[/1(0- /2(0]+ 2/i'(0 = 12,

L J i2(t )dt + 4/2(0 + 6[/2(0- /1(»)] = 0.
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Figure 5.5
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Suppose that the switch in the circuit is closed at time t = 0. This implies that /, (0)

and /2(0) = 0. Solve for /((/) in the first equation, differentiate the second equation, and
substitute for I [ ( t ) to get

/,' = /,(f , /,, /2) = -4/, + 3/2 + 6, with /, (0) = 0,

/2 = /2O.h J i ) = 0.6/,'- 0.2/2 =-2.4/, + I.6/2 + 3.6, with /2(0) = 0.

The exact solution to this system is

/,(t ) = -3.375e-2' + 1.87V0-* + 1.5 and /2(r) =-2.25e“2' + 2.25e-°-4'.

We will apply the Runge-Kutta method of order 4 to this system with h = 0.1.Since

Who = /. (0) = 0 and w2.o = /2(0) = 0,

*1.1 = */ifo. W1.0,*2.0) = o. l /, (0, 0, 0) = 0.1[-4(0) + 3(0) + 6] = 0.6,

*i.2 = hf2( to, wi.o, w2.o) = 0.1 /2 (0. 0, 0) = 0.1[-2.4(0) + 1.6(0) + 3.6] = 0.36,

*2.1 = */i ( to +
2^’ wi.o +

2*1.1*
w2.o +

2*i.2^ = 0*1 /i (0.05, 0.3, 0.18)

*2,2 = hf2

0.1[ —4(0.3) + 3(0.18) + 6] = 0.534,

1( to +
^*» W|,o + -*1.1» ^2,0 +

2*1.2^ 0.1 /2(0.05, 0.3, 0.18)

0.1[—2.4(0.3) + 1.6(0.18) + 3.6] = 0.3168.

Generating the remaining entries in a similar manner produces

*3f

, = (0.1)/, (0.05, 0.267, 0.1584) = 0.54072,

*3.2 = (0.1)/2(0.05, 0.267, 0.1584) = 0.321264,

*4.1 = (0.1)/, (0.1, 0.54072, 0.321264) = 0.4800912,

*4.2 = (0.1)/2(0.1, 0.54072, 0.321264) = 0.28162944.
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218 C H A P T E R 5 Numerical Solution of Initial-Value Problems

As a consequence,

/1 (0.1) « wu = wi ,o + + 2*2, I + 2*3.1 +*4. i ]

= 0 + -[0.6 + 2(0.534) + 2(0.54072) + 0.4800912] = 0.5382552
6

and

/2(0.1) % w2, i = w2,o + g[*i ,2 + 2*2.2 + 2*3,2 + ^4.2] = 0.3196263.

The remaining entries in Table 5.15 are generated in a similar manner.

Table 5.15 t j W U W 2J \h( t j ) - w2 j \

0.0 0 0 0 0

0.1 0.5382550 0.3196263 0.8285 x lO'5 0.5803 x 10“5

0.2 0.9684983 0.5687817 0.1514 x 10 4 0.9596 x 10~5

0.3 1.310717 0.7607328 0.1907 x 10 4 0.1216 x 10 4

0.4 1.581263 0.9063208 0.2098 x 10~4 0.1311 x 10 4

0.5 1.793505 1.014402 0.2193 x lO"4 0.1240 x 10~4

Any of the methods implemented in MATLAB can be used for systems of differential

equations. For example, to use ode45 to solve our system given in Example 1 we first define
the right-hand sides using an M-f ile called F . m that contains the statements

function dy = F (t , y)

dy = zeros (2 , 1) ;

dy (1) = -4*y ( 1)+3*y (2) +6;

dy (2) = -2 . 4*y ( l ) +l . 6*y (2) +3 . 6 ;

Then make the right-hand side of the system of differential equations known to MATLAB
with

FF = OF

We now define the t values at which we want to approximate the solutions

tspan = [0 0.1 0.2 0.3 0.4 0 . 5]

The following command computes the solution to the system at the given values of t . The
initial conditions I\ (0) = 0 and /2(0) = 0 are given as [0 0].

[T , YY]=ode45 (FF , tspan , [0 0] )

The MATLAB response places the t values in the array T and the approximate solution
values in YY, with the approximations for I\(t ) in the first column and /2(f ) in the second.

0
0.100000000000000
0.200000000000000
0.300000000000000
0.400000000000000
0.500000000000000

0
0.538263922676270
0.968513005638230
1.310736555252393
1.581284356153020
1.793527044389029

0
0.319632054268176
0.568791683477228
0.760744806883952
0.906333359733513
1.014415449337470
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5.7 Methods for Systems of Equations 219

Higher-Order Differential Equations

Many important physical problems—for example, electrical circuitsand vibrating systems—
involve initial-value problems whose equations have order higher than 1. New techniques

are not required for solving these problems. By relabeling the variables we can reduce

a higher-order differential equation into a system of first-order differential equations and

then apply one of the methods we have already discussed.
A general mth-order initial-value problem has the form

/">(») = /(»,*/ y—'o,

for a < t < b, with initial conditions

y (a ) = ctuy' (a ) = a2 y(m ~ [ )(a ) = am.

To convert this into a system of first-order differential equations, define

mW = yd ).u2(t ) = y\t ) um (t ) = /—»«.
Using this notation, we obtain the first-order system

du i dy— = — = “2,
dt dt

dui
dt

dy

dt
= w 3,

dum—\

dt

dy(m —2)

dt = U m »

and

dum
dt

dy(m l )

= v (m)

dt
y y { m l ) ) = f ( t , u u u2 u m ).

with initial conditions

u,(a) = y(a ) = or ,, u2(a ) = y’(a ) = a2 um (a ) = y ( m l )(a ) = am.

Example 2 Transform the second-order initial-value problem

y” — 2y' + 2y = e* sinf , forO < t < 1, with y(0) = —0.4, > '(0) = —0.6

into a system of first order initial-value problems, and use the Runge-Kutta method of order

4 with h = 0.1 to approximate the solution.

Solution Let wi (f ) = y (f ) and 112(f ) = /(/). This transforms the second-order equation
into the system

*<5(0 = «2(f )»

u'2(t ) = e2t sinf - 2u\ ( t ) + 2u2 ( t ) ,

with initial conditions wj(0) = -0.4, u2 (0 ) = —0.6.
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220 C H A P T E R 5 Numerical Solution of Initial-Value Problems

The initial conditions give wio = —0.4 and w2io = —0.6. The Runge-Kutta method
of order 4 for systems described on page 216 with j = 0 give

*i . i = Vi (lb, wit0, w2,o) = hw2 ,o = -0.06 ,

*1.2 = V2fo>. wi .o, w2.o) = hlf* sin /o - 2w 1 >0 + 2w2 >0] = -0.04,

*2.1 = Vl

*2

*[*2.0 + -*1.2
( h 1 1 . \
Uo +

2
» wi .o +

2*1.1 » w2.o +
2*1.2 J =

,2 = */2 ^*0 + Wi,o + -*1.1» 2,0 +
2*1> 2^= h ĵ *0 05* sin(r0 + 0.05) - 2^wi.0 + ^*1,1^ + 2^w2,0 + ^*1.2^ j

-0.062,

= -0.03247644757,

*3,1 = * w2,o + ^*2,2 -0.06162832238,

e2(r0-o.o5 ) sin^+ Q 05) - 2^wi.o + ^*2.1^ + 2^w2,o +
2*2-2)]*3,2 = h

= -0.03152409237,

*4.1 = h[w2.o + *3.2] = -0.06315240924,

and

*4.2 = * [e2(tQ+0A ) sin(lb + 0.1) - 2(w ,
t0 +*3.1) + 2(w2.0 + *3.2)] = -0.02178637298.

So

Wj.i = W|,o + — (*1 , 1 + 2AT2.1 + 2*3.1 “H *4,1) = —0.4617333423 and
6

W2.1 = w2.o +|(*,.2 + 2*2.2 + 2*3.2 +*«) = -0.6316312421.

The value wj. i approximates wj (0.1) = y (0.1) = 0.2e2 (OI ) (sin0.1 — 2 cos 0.1), and
W 2.1 approximates «2(0.1) = >'(0.1) = 0.2̂ 2(0 , ) (4 sin 0.1 — 3 cos 0.1).

The set of values w\ j and w> 2 jt for 7 = 0, 1, . . . » 10, are presented in Table 5.16 and
are compared to the actual values of « i (/ ) = 0.2̂ 2, (sint — 2cos / ) and «2(r ) = «! (/ ) =
0.2e21 (4 sin / — 3 cos / ).

Table 5.16

t j yit j ) = u1(t j) WU y% ) = u2(t j )
”2J

0.0 <B1P!7!Tr?!S -0.40000000 -0.60000000 BTSTiTiTW 0 0
0.1 -0.46173297 -0.46173334 -0.63163105 -0.63163124 3.72 x 10-7 1.92 x 10-7

0.2 -0.52555905 -0.52555988 -0.64014866 -0.64014895 8.36 x 10-7 2.84 x 10-7

0.3 -0.58860005 -0.58860144 -0.61366361 -0.61366381 1.39 x 10-6 1.99 x 10 7

0.4 -0.64661028 -0.64661231 -0.53658220 -0.53658203 2.02 x 10-6 1.68 x 10-7

0.5 -0.69356395 -0.69356666 -0.38873906 -0.38873810 2.71 x 10“ 9.58 x 10~7

0.6 -0.72114849 -0.72115190 -0.14438322 -0.14438087 3.41 x 10"6 2.35 x 10 6

0.7 -0.71814890 -0.71815295 0.22899243 0.22899702 4.06 x 10"6 4.59 x 10"6

0.8 -0.66970677 -0.66971133 0.77198383 0.77199180 4.55 x 10"6 7.97 x 10"6

0.9 -0.55643814 -0.55644290 1.5347686 1.5347815 4.77 x 10-6 1.29 x 10 5

1.0 -0.35339436 -0.35339886 2.5787466 2.5787663 4.50 x 10~6 1.97 x IQ 5
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5.7 Methods for Systems of Equations 221

Other one-step approximation methods can be extended to systems. If the Runge-Kutta-
Fehlberg method is extended, then each component of the numerical solution w\ j , w2 j > . .

wmj must be examined for accuracy. If any of the components fail to be sufficiently accurate,

the entire numerical solution must be recomputed.
The multistep methods and predictor-corrector techniques can also be extended easily

to systems. Again, if error control is used, each component must be accurate. The extension

of the extrapolation technique to systems can also be done, but the notation becomes quite
involved.

E X E R C I S E S E T 5 . 7

1. Use the Runge-Kutta method of order 4 for systems to approximate the solutions of the following

systems of first-order differential equations and compare the results to the actual solutions.

a. u\ = 3i*| 4- 2M 2 — (2/2 + lie2', f o r O < / < l with « ,(0) = l ;

«2 = 4u\ 4- u2 4- (/2 -1- 2/ — 4)e2', for 0 < / < 1 with «2(0) = 1;

h = 0.2; actual solutions «!(/) = \e5‘ - + e21 and «2 (/) =\e51 + \e~* 4- t 2e21.
b. —4« j — 2M2 + cosr -f 4 sinr , f o r 0 < / < 2 with «!(()) = 0;

«2 = 3« i 4- «2 - 3sin /, for 0 < t < 2 with «2(0) = —1;
h = 0.1; actual solutions uj(f ) = 2e ~l — 2e -2/ 4- sin / and u 2(/) = —3e-' 4- 2e-2/.

c. u\ = «2, for 0 < / < 2 with « i (0) = l;

«2 = —«i — 2^ + 1, forO < / < 2 with «2(0) = 0;

«3 = —« i — e' -1- 1, for 0 < / < 2 with «3(0) = 1;

h = 0.5; actual solutions « i (/) = cos / 4- sin / — e‘ 4- 1, «2(f ) = - sin / 4- cos / -eand
«3(/) = - sin / 4- cos /.

d. u\ = «2 - «3 4- /, for 0 < / < 1 with « i (0) = 1;

«2 = 3r2, forO < / < 1 with «2(0) = 1;

M 3 = «2 4- e
_
l, f o r 0 < / < l with «3(0) = —1;

h = 0.1; actual solutions « i (/) = —0.05/5 4- 0.25/
4 4- / 4- 2 — e~\ «2(0 = t3 4- 1, and

M 3(/) = 0.25/
4 4- / - e~'.

2. Use the Runge-Kutta method for systems to approximate the solutions of the following higher-order

differential equations and compare the results to the actual solutions.

a. y" — 2y' 4- y = te‘ — /, for 0 < / < 1 with y(0) = y'(0) = 0 and h = 0.1; actual solution

y(0 = i /3e'- tel 4- 2e‘ - / - 2.
b. t 2 y"- 2/y' 4- 2y = /3 In /, for 1 < / < 2 with y( l ) = 1, y'( l ) = 0, and h = 0.1; actual solution

y(0 = ^ + ^
3 l n / -|/ 3.

c. ym 4- 2y"- / - 2y = for 0 < / < 3 with y(0) = 1, y'(0) = 2, y"(0) = 0, and h = 0.2;

actual solution y(/) = 4- — ^e-2/ -I- lte‘.
d. /3yw - t 2 y" 4- 3ty' - 4y = 5/3 In / + 91\for 1 < / < 2 with y( l ) = 0, /(1) = 1, /'(1) = 3,

and h = 0.1; actual solution y(/ ) = — /2 4- / cos(ln /) 4- / sin(ln /) 4- /3 I n /.
3. Change the Adams Fourth-Order Predictor-Corrector method to obtain approximate solutions to

systems of first-order equations.

4. Repeat Exercise 1 using the method developed in Exercise 3.

5. The study of mathematical models for predicting the population dynamicsof competing species has its

origin in independent works published in the early part of this century by A. J. Lotka and V. Volterra.
Consider the problem of predicting the population of two species, one of which is a predator, whose
population at time / is*2(/ ), feeding on the other, which is the prey, whose population is *, (/ ). We

will assume that the prey always has an adequate food supply and that its birth rate at any time is
proportional to the number of prey alive at that time; that is, birth rate (prey) is k\ X\ (t ).The death

rate of the prey depends on both the number of prey and predators alive at that time. For simplicity,

we assume death rate (prey) = k2xi (/)x2(/).The birth rate of the predator, on the other hand, depends
on its food supply, X \ (/), as well as on the number of predators available for reproduction purposes.
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222 C H A P T E R 5 Numerical Solution of Initial-Value Problems

For this reason, we assume that the birth rate (predator) is kyXi (0*2(0- ’The death rate of the predator
will be taken as simply proportional to the number of predators alive at the time; that is, death rate

(predator) = kiX 2 (t ).
Since xj(0 and xj(0 represent the change in the prey and predator populations, respectively,

with respect to time, the problem is expressed by the system of nonlinear differential equations

*J (0 = *i*i(0 - Mi (0*2(0 and *2(0 = Mi (0*2(0-*4*2(0.

Use Runge-Kutta of order 4 for systems to solve this system for 0 < t < 4, assuming that the initial

population of the prey is 1000 and of the predators is 500 and that the constants are k\ = 3, k2 =
0.002,*3 = 0.0006. and k4 = 0.5. Is there a stable solution to this population model? If so, for what
values x\ and xz is the solution stable?

6. In Exercise 5 we considered the problem of predicting the population in a predator-prey model.
Another problem of this type is concerned with two species competing for the same food supply.
If the numbers of species alive at time t are denoted by *i (/) and xj (/ ), it is often assumed that,

although the birth rale of each of the species is simply proportional to the number of species alive
at that time, the death rate of each species depends on the population of both species. We will assume

that the population of a particular pair of species is described by the equations

=*, (/)[4- 0.0003*, (1)- 0.0004*i (r)]

and

dx ]{ ,)
=*2(r)[2-0.0002*,(f )-0.0001*2(1)).

at

If it is known that the initial population of each species is 10,000, find the solution to this system for
0 < t < 4. Is there a stable solution to this population model? If so, for what values of x , and x2 is
the solution stable?

5.8 Stiff Differential Equations

Stiff systems derive their name

from the motion of spring and

mass systems that have large

spring constants.

All the methods for approximating the solution to initial-value problems have error terms

that involve a higher derivative of the solution of the equation. If the derivative can be

reasonably bounded, then the method will have a predictable error bound that can be used

to estimate the accuracy of the approximation. Even if the derivative grows as the step sizes
increase, the error can be kept in relative control, provided that the solution also grows

in magnitude. Problems frequently arise, however, where the magnitude of the derivative

increases, but the solution does not. In this situation, the error can grow so large that
it dominates the calculations. Initial-value problems for which this is likely to occur are
called stifTequations and are quitecommon, particularly in the study of vibrations, chemical

reactions, and electrical circuits.
Stiff differential equations have an exact solution with a term of the form e~c\where

c is a large positive constant. This is usually only a part of the solution, called the transient
solution; the more important portion of the solution is called the steady-state solution. A
transient portion of a stiff equation will rapidly decay to zero as t increases, but since the

nth derivative of this term has magnitude cne~c\ the derivative does not decay as quickly,

and for large values of c it can grow very large. In addition, the derivative in the error
term is evaluated not at f , but at a number between zero and f , so the derivative terms may

increase as t increases—and very rapidly indeed. Fortunately, stiff equations can generally

be predicted from the physical problem from which the equation is derived, and with care
the error can be kept under control. The manner in which this is done is considered in this

section.
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