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2. The initial-value problem

y’=—y+1—§. forl <tr<2, withy(l)=1

has the exact solution y(t) = 1 + (e'~* — )¢~

a. Use the Runge-Kutta-Fehlberg method with tolerance TOL = 10~ to find w, and w». Compare
the approximate solutions to the actual values.

b. Use the Adams Variable-Step-Size Predictor-Corrector method with tolerance TOL = 0.002
and starting values from the Runge-Kutta method of order 4 to find w, and ws. Compare the
approximate solutions to the actual values.

3. Usethe Runge-Kutta-Fehlberg method with tolerance TOL = 10~ to approximate the solution to the
following initial-value problems.
¥y 2

L y= (:) + f.ror 1 <1< 12 with y(1) = 1, hmax = 0.05, and hmin = 0.02.

b. y =sint+e ', for 0 <t <1, with y(0) =0, hmax = 0.25, and Amin = 0.02.
e Y= +yu ' for | =<3, with y(1) = -2, hmax = 0.5, and hmin = 0.02.
d. y =—ty+4ry! for 0=t =<1, with y(0) = 1, hmax = 0.2, and hmin = 0.01.
4, Use the Runge-Kutta-Fehlberg method with tolerance TOL = 107%, hmax = 0.5, and hmin = 0.05
to approximate the solutions to the following initial-value problems. Compare the results to the actual

values.
2
a y= { = % for 1 <¢ <4, with y(1) = I; actual solution y(t) = /(1 + Int).

2
y=1+ ';—r + (J:) Jfor 1 <1 <3, with y(1) = 0; actual solution y(t) = rtan(Inr).

¢ ¥ =—(y+D(y+3),for 0 < < 3,with y(0) = —2; actual solution y(t) = —3+2(14+e ¥) "',
d. ¥ = (e+2t*)y* —ry,for 0 <1 < 2, with y(0) = ¥; actual solution y(r) = (3422 +6¢' )12,
5. Use the Adams Variable-Step-Size Predictor-Corrector method with TOL = 10~ 1o approximate the
solutions to the initial-value problems in Exercise 3.
6. Use the Adams Variable-Step-Size Predictor-Corrector method with tolerance TOL = 107, hmax =
0.5, and hmin = 0.02 to approximate the solutions to the initial-value problems in Exercise 4.

7.  An electrical circuit consists of a capacitor of constant capacitance C = 1.1 farads in series with a
resistor of constant resistance Ry = 2.1 ohms. A voltage £(r) = 110sin¢ is applied at time ¢ = 0.
When the resistor heats up, the resistance becomes a function of the current 7,

R(r) = Ry + ki, where k=10.9,

and the differential equation for i becomes

26\ di 1 dE
(”—‘)a*m—c‘m—cz-

Find the current i after 2 s, assuming {(0) = 0.

‘ 5.7 Methods for Systems of Equations

The most common application of numerical methods for approximating the solution of
initial-value problems concerns not a single problem, but a linked system of differential
equations. Why, then, have we spent the majority of this chapter considering the solution
of a single equation? The answer is simple: to approximate the solution of a system of
initial-value problems, we successively apply the techniques that we used to solve problems
involving a single equation. As is so often the case in mathematics, the key to the methods
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5.7 Methods for Systems of Equations 215

for systems can be found by examining the easier problem and then logically modifying it
to treat the more complicated situation.
An mth-order system of first-order initial-value problems has the form

du

d_r] = filtsur, s .., Up),
d

% = folt, w1, U, ..., 4y,
dil

W =fm{£|u|-1‘2,----um)|

fora <t < b, with the initial conditions
wla) =a, wl@=o0, ..., Us@ =am.

The object is to find m functions u, us, . .., u,, that satisfy the system of differential
equations together with all the initial conditions.

Methods to solve systems of first-order differential equations are generalizations of the
methods for a single first-order equation presented earlier in this chapter. For example, the
classical Runge-Kutta method of order 4 given by

Wp = o,

ky = hf (t;, wy),

h 1
k> =hf(!;' +5.W,: + ik;).

h 1
k3=hf(f:' +iawi +ik2)'

ks = hf (tiz1, wi +k3),

and

1
Wizt =w; + E[h + 2k, + 2k3 + ka),
foreachi =0, 1,..., N — 1, is used to solve the first-order initial-value problem
Y =f@y), fora<r<b, withy()=a.

It is generalized for systems as follows.
Let an integer N > 0 be chosen and set h = (b — a)/N. Partition the interval [a, b]
into N subintervals with the mesh points

tj=a+ jh foreach j=0,1,...,N.

Use the notation wy; foreach j = 0,1,...,Nandi = 1,2,...,m to denote an
approximation to u;(t;); that is, w;; approximates the ith solution u; (t) of the system at the
jth mesh point ¢;. For the initial conditions, set

Wip =0y, Wan =@y, saay Wm0 = Qm-

Figure 5.4 gives an illustration of this notation.
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Figure 5.4
¥ y Y4
xl.l . :2.3 uy() mﬂ__u,,(a) = G
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(@) = o (1) W e Wi 1 4 .
N
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Example 1

Suppose that the values wy j, wa,j, ..., Wy, ; have been computed. We obtain wy j4,
W3, jils« oo Wi, j+1 Dy first calculating, foreachi =1,2,...,m,

kii =hfi(t;, Wi Wajs ooy Wi i),
and then finding, for each i,
kai =hf,—(r‘,- + f—', wi,;+ lki_,.wz,j + lkm, P lkl‘m).
2 2 2 2
We next determine all the terms

1
Ekz.m)

ceaWh it k3.m)-

1
+ EkZZl weey Wi j +

h 1
ks; = hf; (Ij + 3 Wi+ ikllvwz{j
and, finally, calculate all the terms
kai = hfi(t; +howyj +ks 1, wej+ ko,

Combining these values gives

1
Wi+l =Wwij+ E[ku +2ky i + 2k, + kg il

foreachi = 1,2,...m.

Note that all the values k; 1, k; 2, . .., k1, must be computed before any of the terms
of the form ks ; can be determined. In general, each k) 1, k; 2, - . ., k;,,, must be computed
before any of the expressions kj+1 ;.

Kirchhoff’s Law states that the sum of all instantaneous voltage changes around a closed
electrical circuit is zero. This implies that the current, /(¢), in a closed circuit containing a
resistance of R ohms, a capacitance of C farads, an inductance of L henrys, and a voltage
source of E(r) volts must satisfy the equation

LI'Gt) + RI(t) + é fi(r)a‘r = E().

The currents ;(¢) and I>(¢) in the left and right loops, respectively, of the circuit shown in
Figure 5.5 are the solutions to the system of equations

20L(0) + 6111 (1) — L(D] +21() = 12,

[}I? f Lt)dt + 4L (t) + 6[1:(t) — L, ()] = 0.
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57 Methods for Systems of Equations 217

Figure 55
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Suppose that the switch in the circuit is closed at time ¢ = 0. This implies that [;(0)
and [5(0) = 0. Solve for /{(z) in the first equation, differentiate the second equation, and
substitute for /(1) to get

f: = filt, 1, ) =—4L +3, +6, with [;(0)=0,
1; = falt, I}, ) = 0.61; — 0205 =—-241 +1.61;+ 3.6, with [,(0)=0.

The exact solution to this system is
L) =—3375¢% +1.875¢ % + 1.5 and L(1) = —2.25¢7% + 2.25¢7 %%,

We will apply the Runge-Kutta method of order 4 to this system with & = 0.1. Since
wio= 1(0) =0and wyo = [2(0) =0,

ki1 = hfi(ro, wi0,w2,0) = 0.1 £1(0,0,0) = 0.1[-4(0) + 3(0) + 6] = 0.6,
ki 2 = hfa(to, w0, wa,0) = 0.1 £2(0,0,0) = 0.1[-2.4(0) + 1.6(0) 4 3.6] = 0.36,

1 1
ka1=h —h, =
2.1 ft(l‘u+2 Wl,o+2

= 0.1[—4(0.3) + 3(0.18) + 6] = 0.534,

1
ki1, wao+ Eh_z) = 0.1 £;(0.05, 0.3, 0.18)

1 1 1
kz‘z = hfz(h"‘ ih. Wi + Ekll:[. Wz_n"' ikl,z) =101 fz(U‘OS. 0.3. 0.18)

=0.1[—2.4(0.3) + 1.6(0.18) 4+ 3.6] = 0.3168.
Generating the remaining entries in a similar manner produces

ks.y = (0.1) f1(0.05, 0.267, 0.1584) = 0.54072,
ks = (0.1) £>(0.05, 0.267, 0.1584) = 0.321264,
ki = (0.1)£1(0.1, 0.54072, 0.321264) = 0.4800912,

and

ka2 = (0.1) £2(0.1, 0.54072, 0.321264) = 0.28162944.
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218 CHAPTER 5 = Numerical Solution of Initial-Value Problems

As a consequence,
1
LHO) mw=wio+ a[kl.l + 2ka1 + 2k3 1 + Ky 1]
1
=0+ 5[0'6 + 2(0.534) + 2(0.54072) + 0.4800912] = 0.5382552

and

1
L(0.1) = wy ) =wapg+ g[kl,z + 2k2.2 + 2k3 2 + ka 2] = 0.3196263.

The remaining entries in Table 5.15 are generated in a similar manner. B
Table 5.15 t Wy Wy j [ (t;) —wy |Fa(t;) — wa |
0.0 0 0 0 0

0.1 0.5382550 0.3196263 0.8285 x 10°° 0.5803 x 1077
0.2 0.9684983 0.5687817 0.1514 x 107 0.9596 x 107

0.3 1.310717 0.7607328 0.1907 x 10 0.1216 x 10°*
0.4 1.581263 0.9063208 0.2098 x 10~ 0.1311 x 107*
0.5 1.793505 1.014402 0.2193 x 10~# 0.1240 x 10~#

Any of the methods implemented in MATLAB can be used for systems of differential
equations. For example, to use ode45 to solve our system given in Example 1 we first define
the right-hand sides using an M-file called F.m that contains the statements

function dy = F(t,y)

dy = zeros(2,1);

dy(1) = -dxy(1)+3*y(2)+6;
dy(2) = -2.4*y(1)+1.6%y(2)+3.6;

Then make the right-hand side of the system of differential equations known to MATLAB
with

FF = @F
We now define the ¢ values at which we want to approximate the solutions
tspan = [0 0.1 0.2 0.3 0.4 0.5]

The following command computes the solution to the system at the given values of ¢. The
initial conditions /,(0) = 0 and /3(0) = 0 are given as [0 0].

[T,YY]=ode45 (FF,tspan, [0 0])

The MATLAB response places the ¢ values in the array T and the approximate solution
values in YY, with the approximations for /,(t) in the first column and />(¢) in the second.

0 0 0

0.100000000000000 0.538263922676270 0.319632054268176

T = 0.200000000000000 and YY = 0.968513005638230 0.568791683477228
0.300000000000000 1.310736555252393 0.760744806883952
0.400000000000000 1.581284356153020 0.906333359733513
0.500000000000000 1.793527044389029 1.014415449337470
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5.7 Methods for Systems of Equations 219

Higher-Order Differential Equations

Many important physical problems—for example, electrical circuits and vibrating systems—
involve initial-value problems whose equations have order higher than 1. New techniques
are not required for solving these problems. By relabeling the variables we can reduce
a higher-order differential equation into a system of first-order differential equations and
then apply one of the methods we have already discussed.

A general mth-order initial-value problem has the form

PR = Ly Y ),
fora <t < b, with initial conditions
y(@) =ai,y'(@) =@z, ...,y" (@) = ap.
To convert this into a system of first-order differential equations, define
ui(0) = y(O, 00 = y' @), ..., un(@) = y" @)

Using this notation, we obtain the first-order system

du, _ dy w
TR T
B B .
dt dt

dt dr
and

du dy™-1

d_:'= yd! =}'fm)=f(f‘}'.y’.u-.)’{'"_n)=f(f'1¢1.u2.---.um).
with initial conditions

ui(a) = y(@) = a1, uz(@) = y'@) = e, ..., n(a) = y" (a) = .

Example 2 Transform the second-order initial-value problem
Y =2y +2y=e¥sint, for0<t<l, with y(0)=—04, y'(0)=—06

into a system of first order initial-value problems, and use the Runge-Kutta method of order
4 with h = 0.1 to approximate the solution.

Solution Let u;(t) = y(t) and uy(t) = y'(¢). This transforms the second-order equation
into the system

) (1) = us(t),

uh(t) = e sint — 2uy (1) + 2ux (1),

with initial conditions u,;(0) = —0.4, uz(0) = —0.6.
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220 CHAPTER 5 = Numerical Solution of Initial-Value Problems

The initial conditions give w; g = —0.4 and wy o = —0.6. The Runge-Kutta method
of order 4 for systems described on page 216 with j = 0 give

k1,1 = hfi(to, wi0, wa,0) = hwzo = —0.06,

k12 = hfalto, wio, wao) = h[e?sinty — 2wy o+ 2wa 0] = —0.04,

h 1 1 1
ky1 = hfy (Fn+ 21 W10 + Ekl.lc w20+ iki.z) =h [Wz.o+ Ekl.z] = —0.062,

h 1 1
koy =hfa (l‘u + 7' W10 -+ ikl.hwlfj + ,:’kl.?.)

= h |00 gin(z, +0.05) — 2 (Wl.o + ékl.l) -+ 2(“’2,0 + %‘ku)]
= —0.03247644757,

kiy=h -Wz,u -+ 2

1
~ku] = —0.06162832238,

[ . 1 1
ks 2 = h|eX0+009 gin(g, 4 0.05) — 2(“'1.0 + ih.l) +2(W2.0 + Ekz.z)]

= —0.03152409237,
ka1 = h[w20 +ka2] = —0.06315240924,

and
ksz = k[T sin(ty + 0.1) — 2(w1,0 + ks.1) + 2(wa.0 + k3 2)] = —0.02178637298.

So
1
Wi =wio+ é(km + 2ka y + 2kay + ks 1) = —0.4617333423  and

W21 =Wao+ é{h,z + 2ky 2 + 2ks 2 + ks o) = —0.6316312421.

The value w ; approximates u;(0.1) = y(0.1) = 0.2¢*®(sin0.1 — 2¢cos 0.1), and
W, approximates u2(0.1) = ¥'(0.1) = 0.2e*©1(45in 0.1 — 3 cos 0.1).

The set of values wy ;j and wy j, for j = 0, 1,..., 10, are presented in Table 5.16 and
are compared to the actual values of u,(t) = 0.2¢¥(sint — 2cost) and uy (1) = u (1) =

0.2¢* (4 sint — 3cos1). ]
Table 5.16
8 ¥(t;) = uy(t;) Wy ¥'(t;) = uz(t;) Wi j ly(e) —wy ;1 ly'(e;} —wal
0.0 —0.40000000 —0.40000000 —0.60000000 —(0.60000000 0 0
0.1 —0.46173297 —0.46173334 —0.63163105 —0.63163124 3.72 x 1077 1.92 x 107
0.2 —0.52555905 —0.52555988 —0.64014866 —0.64014895 8.36 % 107 2.84 x 1077
0.3 —0.58860005 —0.58800144 —0.61366361 —0.61366381 1.39 x 10¢ 1.99 x 107
04 —0.64661028 —0.64661231 —0.53658220 —0.53658203 2.02 x 10 1.68 % 107
0.5 —0.69356395 —0.69356666 —0.38873906 —(.38873810 271 x 107 9.58 x 1077
0.6 —0.72114849 —0.72115190 —0.14438322 —(0.14438087 341 x 107 235 %107
0.7 —0.71814890 —0.71815295 0.22899243 0.22899702 4.06 x 107¢ 4.59 x 10°¢
0.8 —0.66970677 —0.66971133 0.77198383 0.77199180 4,55 x 107 797 x 10°°
09 —0.55643814 —0.55644290 1.5347686 1.5347815 4.77 x 107¢ 1.29 x 1073
1.0 —0.35339436 —0.35339886 2.5787466 2.5787663 4.50 x 10°¢ 1.97 x 1073
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57 Methods for Systems of Equations 0

Other one-step approximation methods can be extended to systems. If the Runge-Kutta-
Fehlberg method is extended, then each component of the numerical solution w;, waj, .. .,
Wm; must be examined for accuracy. If any of the components fail to be sufficiently accurate,
the entire numerical solution must be recomputed.

The multistep methods and predictor-corrector techniques can also be extended easily
to systems. Again, if error control is used, each component must be accurate. The extension
of the extrapolation technique to systems can also be done, but the notation becomes quite
involved.

EXERCISE SET 57

1.  Use the Runge-Kutta method of order 4 for systems to approximate the solutions of the following
systems of first-order differential equations and compare the results to the actual solutions.
8w\ =3u+2u;— (2 +1)e¥, for0<t<l withu;(0)=1;
uy = duy +uz+ (2 + 2t —4)e*, forO<r<1 withu(0)=1;
h=02; actual solutions u;(f) = le¥ — le*' +e¥ and w(r) = le¥ + 2e! + r2e®.
b. wuj=—4u; —2uz +cosr+4sint, for0<1 <2 withu(0)=0;
ub=3u; +us—3sint, for 0 <t <2 withu(0)=-1;
h=0.1; actual solutions uy(f) =2 —2e ¥ +sint and ws(r) ==3e ' 4+ 2¢ 7.
e uy=uwu for0<r<2 withu;(0)=1;

uy=—u;—2e'+1, forO0=t <2 withu(0)=0;

wy=—u;—e' +1, for0=<tr =<2 withus(0)=1;

h=05; actual solutions u(t) =cost +sint —e' +1, wuy(t) = —sint +cost — €', and
us(t) = —sint + cost.

d wi=w—u+t, for 0st<1 withu(@=1;
wy=73% for0O<t<1 withuz(0)=1;
uy=wa+e”’, fool=<r=<1 withu:(0)=-1;
h =0.1; actual solutions u;(t) = —0.05 +0.25¢* +¢t +2—e™", w2ft) =+ +1, and
wi(1) =025t +1— e,

2. Use the Runge-Kutta method for systems to approximate the solutions of the following higher-order
differential equations and compare the results to the actual solutions.

a y' —-2y+4+y=te —tfor0 <1t <1 with y(0) = y'(0) = 0 and & = 0.1; actual solution
¥y =3 =re' 4 28 ~1—2%

b. r*y'—2ty'+2y=rt'lnt,forl <1 <2with y(1) = 1, y'(1) = 0,and h = 0.1; actual solution
yO)=Ie+ 1 Inr — 20

e Y'+2y'—y-2y=¢.for0<t<3withy(0)=1,y(0) =2 y0) =0,and h =0.2;
actual solution y(t) = ‘;—28’ - "—e_' - 'ée_z" + ;—_re‘ﬂ

d. Py =12y 43ty =4y =58 Int + 902, for 1 =t <2 with y(1) =0,y (1) =1, y"(1) =3,
and h = 0.1; actual solution y(t) = —* + rcos(lnt) + ¢ sin(inr) + *Intz.

3.  Change the Adams Fourth-Order Predictor-Corrector method to obtain approximate solutions to
systems of first-order equations.

4.  Repeat Exercise 1 using the method developed in Exercise 3.

5.  Thestudy of mathematical models for predicting the population dynamics of competing species has its
origin in independent works published in the early part of this century by A. J. Lotka and V. Volterra.
Consider the problem of predicting the population of two species, one of which is a predator, whose
population at time £ is x,(¢), feeding on the other, which is the prey, whose population is x, (r). We
will assume that the prey always has an adequate food supply and that its birth rate at any time is
proportional to the number of prey alive at that time; that is, birth rate (prey) is kix; (). The death
rate of the prey depends on both the number of prey and predators alive at that time. For simplicity,
we assume death rate (prey) = kax)(t)x2(t). The birth rate of the predator, on the other hand, depends
on its food supply, x, (¢}, as well as on the number of predators available for reproduction purposes.
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22 CHAPTER 5 = Numerical Solution of Initial-Value Problems

For this reason, we assume that the birth rate (predator) is k;x; (¢ )x(¢) . The death rate of the predator
will be taken as simply proportional to the number of predators alive at the time; that is, death rate
(predator) = kyx;(1).

Since x;(r) and x;(r) represent the change in the prey and predator populations, respectively,
with respect to time, the problem is expressed by the system of nonlinear differential equations

X () =k (1) — lox (Dxa(8) and  x5() = kax (DX (1) — kaxa (7).

Use Runge-Kutta of order 4 for systems to solve this system for 0 < ¢ < 4, assuming that the initial
population of the prey is 1000 and of the predators is 500 and that the constants are k; = 3,k; =
0.002, ks = 0.0006, and ks = 0.5. Is there a stable solution to this population model? If so, for what
values x; and x; is the solution stable?

6. In Exercise 5 we considered the problem of predicting the population in a predator-prey model.
Another problem of this type is concerned with two species competing for the same food supply.
If the numbers of species alive at time r are denoted by x,(¢) and xa(r), it is often assumed that,
although the birth rate of each of the species is simply proportional to the number of species alive
at that time, the death rate of each species depends on the population of both species. We will assume
that the population of a particular pair of species is described by the equations

ﬂ'xdl:(-' ) — x,(6){4 — 0.0003x, (1) — 0.0004x(1)]
and
‘f";r(’ ) _ (012 - 0.0002x; (1) — 0.0001x:(1)].

If it is known that the initial population of each species is 10,000, find the solution to this system for
0 <t < 4. Is there a stable solution to this population model? If so, for what values of x, and x, is
the solution stable?

I 58 stiff Differential Equations

All the methods for approximating the solution to initial-value problems have error terms
that involve a higher derivative of the solution of the equation. If the derivative can be
reasonably bounded, then the method will have a predictable error bound that can be used
to estimate the accuracy of the approximation. Even if the derivative grows as the step sizes
increase, the error can be kept in relative control, provided that the solution also grows
in magnitude. Problems frequently arise, however, where the magnitude of the derivative
increases, but the solution does not. In this situation, the error can grow so large that
Stiff systems derive their name it dominates the calculations. Initial-value problems for which this is likely to occur are

from the motion of spring and called stiff equations and are quite common, particularly in the study of vibrations, chemical
mass systems that have large reactions, and electrical circuits.
SR COnag, Stiff differential equations have an exact solution with a term of the form e, where

¢ is a large positive constant. This is usually only a part of the solution, called the transient
solution; the more important portion of the solution is called the steady-state solution. A
transient portion of a stiff equation will rapidly decay to zero as ¢ increases, but since the
nth derivative of this term has magnitude ¢"e™, the derivative does not decay as quickly,
and for large values of ¢ it can grow very large. In addition, the derivative in the error
term is evaluated not at ¢, but at a number between zero and ¢, so the derivative terms may
increase as ¢ increases—and very rapidly indeed, Fortunately, stiff equations can generally
be predicted from the physical problem from which the equation is derived, and with care
the error can be kept under control. The manner in which this is done is considered in this
section.

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
deemed S Ry supprEssed content dees ool maxtlaly affoa the overll leaming expericnce. Cengage Loaming reserves the ripht i remove additinnal contee & any 1time f subrseguent rights restrictons rogquire [k



