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4.9 Numerical Differentiation

At the beginning of this chapter we stated that derivativeapproximationsare not as frequently
needed as integral approximations. This is true for the approximation of single derivatives,

but derivative approximation formulas are used extensively for approximating the solutions

to ordinary and partial differential equations, a subject we consider in Chapters 11 and 12.
The derivative of the function / at x p is defined as

/ '(*o) = lim
h—*0

f ( X Q +h)- f ( X Q )

h

This formula gives an obvious way to generate an approximation to f' (xo); simply compute

f j xp + h ) - FJXQ)

h

for small values of h. Although this may be obvious, it is not very successful, due to our
old nemesis, round-off error. But it is certainly the place to start.

To approximate fixo), suppose first that xo e (a, b), where / e C 2 [a , b\, and that

x\ = xo+h for some h ^ 0 that is sufficiently small to ensure that x\ e [a , b\.We construct

the first Lagrange polynomial, PQ. I , for / determined by XQ and x\ with its error term

f i x ) = Po.iOO +
2!

/ (tW)

/(*>)(*- x o -h)
+

fjxo + h ) j x - X Q )
+

j x - x0 )( x - x p - h )

-h h 2

for some number £ (x ) in [a , b ]. Differentiating this equation gives

f\x ) =
f t o+V - f t o )

+ D x
h

{x - x0 )( x - x0 - h ) „
2 / (fto)

f i xo + h ) - f i x0)
+

2(x- x0 )-h y//(^(x^)h 2

SO

Difference equations were used

and popularized by Isaac Newton

in the last quarter of the 17th

century, but many of these

techniques had previously been

developed by Thomas Harriot

(1561-1621) and Henry Briggs

(1561-1630). Harriot made

significant advances in navigation

techniques, and Briggs was the

person most responsible for the

acceptance of logarithms as an

aid to computation.

f ( x )*
/.

(*>.+ ft

h

with error

There are two terms for theerror in this approximation.The first term involves /"(£(x)),

which can be bounded if we have a bound for the second derivative of /. The second part

of the truncation error involves Ac/"(ICO) = /"'(ICO) •|'C0, which generally cannot be
estimated because itcontains the unknown term|'C0- However, when* is*o, the coefficient

of Ac/"(ICO) is zero. In this case, the formula simplifies to the following:
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164 CH A PTER 4 Numerical Integration and Differentiation

Two-Point Formula

I f /" exists on the interval containing XQ and JC0 + h , then

/'(*>) =
f i xo + h ) — f ( xQ)

h \f "«)•

for some number $ between xo and XQ + h.

Suppose that Af is a bound on |/"(JC)| for x e [a , b ]. Then for small values of /i,

the difference quotient [ f i xo + h ) — f i xo ) ] / h can be used to approximate f i xo) with an
error bounded by M \h\ / 2.This is a two-point formula known as the forward-difference
formula if h > 0 (see Figure 4.20) and the backward-difference formula if h < 0.

Figure 4.20
y - Slope /'(*o)

fixo + h ) - f ( x0 )
Slope

x0 x0 + h x

Example 1 Use the forward-difference formula toapproximate the derivative of f ( x ) = l nxa txo = 1.8
using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Solution The forward-difference formula

/(1.8+ h ) — f (1.8)

h

with h = 0.1 gives

In 1 .9 - I n 1 .8

0.1

0.64185389- 0.58778667

0.1 = 0.5406722.

Because f i x ) = — l / x1 and 1.8 < f < 1.9, a bound for this approximation error is

\hfm

2
1* 1
2H 2 <

0.1

2(1.8)2 = 0.0154321.

The approximation and error bounds when h = 0.05 and h = 0.01 are found in a similar

manner and the results are shown in Table 4.9.
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4.9 Numerical Differentiation 165

Table 4.9
h /(1.8 + h)

/(1.8 + /i) -- /(1.8) \h\
h 2(1.8)2

0.1 0.64185389 0.5406722 0.0154321
0.05 0.61518564 0.5479795 0.0077160
0.01 0.59332685 0.5540180 0.0015432

Since fix ) = l /x , the exact value of /'(1.8) is 0.555, and in this case the error bounds
are quite close to the true approximation error.

To obtain general derivative approximation formulas, suppose that *o, *i , . . . xH are
(n + 1 ) distinct numbers in some interval / and that / C"+1(/). Then

m= £ fWi to +

for some f (JC) in / , where L, (x ) denotes the yth Lagrange coefficient polynomial for / at

JCQ, x \ , . . . , xn . Differentiating this expression gives

n

f'(x ) = J2 f (* j )L'j (x ) + Dx
j=0

( X - X0 ) - - ( X - X „)

(n + 1)!
/("+1 ) (*(*))

(n + 1)!

Again we have a problem with the second part of the truncation error unless x is one of
the numbers x*. In this case, the multiplier of Dx[/ (n+1 ) (£(*))] is zero, and the formula
becomes

/-(**) = E/(*/)ty**) +
j=o

f {n+ l\Hxk ) )

(n +1)!
- X j ).

j=0
j*k

Three-Point Formulas

Applying this technique using the second Lagrange polynomial at xo, = *o + h , and
x2 = XQ + 2h produces the following formula.

Three-Point Endpoint Formula

If {"' exists on the interval containing XQ and xo + 2h , then

fixo) = ^[-3/(xo) + 4/(*o + h ) - f ( x0 + 2h ) ) + y/'"«).

for some number £ between XQ and XQ + 2h .

This formula is useful when approximating the derivative at the endpoint of an interval .

This situation occurs, for example, when approximations are needed for the derivatives used
for the clamped cubic splines. Left endpoint approximations are found using h > 0, and
right endpoint approximations using h < 0.
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166 C H A P T E R 4 Numerical Integration and Differentiation

When approximating the derivative of a function at an interior point of an interval , it is
better to use the formula that is produced from the second Lagrange polynomial at x0 - h,

XQ, andxo + h .

Three-Point Midpoint Formula

If /'" exists on the interval containing xo — h and xo + h , then

/'(*o) = L[/ (Jo + h ) - f {xo - A)]-^/"(*),

for some number £ between XQ - h and XQ H- h .

The error in the Midpoint formula is approximately half the error in the Endpoint
formula and / needs to be evaluated atonly two points whereas in the Endpoint formula three
evaluations are required. Figure 4.21 gives an illustration of the approximation produced
from the Midpoint formula.

Figure 4.21

y -
Slope f\xd

^̂
-̂^^Slope

2h
[/(*> + A)-/(*o “ A)]

1 1 1

*0
~ h XQ XQ + h X

These methods are called three -point formulas (even though the third point, f (xo),

does not appear in the Midpoint formula). Similarly, there are five- point formulas that
involve evaluating the function at two additional points, whose error term is 0 ( hA ) . These
formulas are generated by differentiating fourth Lagrange polynomials that pass through
the evaluation points. The most useful is the Midpoint formula.

Five-Point Formulas

Five-Point Midpoint Formula

If /
(5) exists on the interval containing *o — 2h and *o + 2h , then

/'(*<>) = 7Ll/to- 2/0- 8/(*0 -h ) + 8/(*o + h )- fixo + 2h )] + ^/(5) (f ),
12/i 30

for some number £ between JCO - 2h and XQ -F 2h.
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4.9 Numerical Differentiation 167

There is another five-point formula that is useful, particularly with regard to the clamped
cubic spline interpolation.

Five-Point Endpoint Formula

If / (5 ) exists on the interval containing xo and xo + 4/z, then

/'(*>) = ^ r-25/(*o) + 48/(*0 + h ) - 36/(JCO + 2h )

+ 16/(x0 + 3h ) - 3/(x0 + Ah ) ] + j/
»>«),

for some number £ between XQ and JCQ + 4/i.

Left-endpoint approximations are found using h > 0, and right-endpoint approxima-
tions are found using h < 0.

Example 2 Values for / (x) = xe1 arc given in Table 4.10. Use all the applicable three-point and
five-point formulas to approximate / '(2.0).

Table 4.10

x f i x )

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Solution The data in the table permit us to find four different three-point approximations:

Three-Point Endpoint Formula with h = 0.1:

-L-3/ (2.0) + 4/(2.1) - / (2.2)] = 5[—3(14.778112) + 4(17.148957) - 19.855030)]

= 22.032310,

Three-Point Endpoint Formula with h = —0.1:

-^[-3/(2.0) + 4/ (1.9) - /(1.8)] = —5[— 3(14.778112) + 4(12.703199)

-10.889365)] = 22.054525,

Three-Point Midpoint Formula with h = 0.1:

-L/(2.1)- /(1.9)] = 5(17.148957- 12.703199) = 22.228790,
V/.Z

Three-Point Midpoint Formula with h = 0.2:

^[/(2.2)- /(1.8)] = ^ (19.855030- 10.889365) = 22.414163.

The only five-point formula for which the table gives sufficient data is the midpoint

formula with h = 0.1.

Five-Point Midpoint Formula with h = 0.1:

^[/(1.8) - 8/ (1.9) + 8/ (2.1) - / (2.2)] = — [10.889365- 8(12.703199)

+ 8(17.148957) — 19.855030]

= 22.166999.

If we had no other information, we would accept the five-point midpoint approximation
using h = 0.1 as the most accurate. The true value for this problem is / '(2.0) = (2-f l )e2 =
22.167168.
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168 C H A P T E R 4 Numerical Integration and Differentiation

Round-Off Error Instability

It is particularly important to pay attention to round-off error when approximating deriva-
tives. When approximating integrals in Section 4.3, we found that reducing the step size in

the Composite Simpson’s rule reduced the truncation error, and, even though the amount

of calculation increased, the total round-off error remained bounded. This is not the case
when approximating derivatives.

When applying a numerical differentiation technique, the truncation error will also
decrease if the step size is reduced, but only at the expense of increased round-off error. To
see why this occurs, let us examine more closely the Three-Point Midpoint formula:

/'(*o) = -U/ (*> + h ) ~ f (x0 - *)]-
In o

Suppose that, in evaluating /(xo+ /i) and / ( XQ H ),WC encounter round-off errors e( xo+h )

and e(*o - h ).Then our computed values /(xo + h ) and /(xo- h ) are related to the true

values /(xo + h ) and / ( XQ - h) by

/(*o + h ) = f ( xo + h ) + e( xQ + h ) and /(x0 - h ) = / (x0 - h ) + e( x0 - h).

In this case, the total error in the approximation,

x /(*> + W - /(*o - W e( xo + h ) - e( xo - h ) h2

/ (*b)
2* 2h

~

6
f

is due in part to round-off and in part to truncating. If we assume that the round-off errors,

e( xo ± h )t for the function evaluations are bounded by some number e > 0 and that the
third derivative of / is bounded by a number Af > 0, then

f\xo) -
fixo 4- h ) - /(x0 + h )

2h

E h\.

To reduce the truncation portion of the error, hr M /6, we must reduce h.But as h is reduced,

the round-off portion of the error, e / h, grows. In practice, then, it is seldom advantageous

to let h be too small, since the round-off error will dominate the calculations.

Illustration Consider using the values in Table 4.11 to approximate / '(0.900), where f ( x ) = sin*.
The true value is cos 0.900 = 0.62161. The formula

/'(0.900).^(0-900 + ft) — /(0.900 — h )
,

2h

with different values of A, gives the approximations in Table 4.12.

Table 4.11
X sinx X sinx Table 4.12 Approximation

0.800 0.71736 0.901 0.78395 h to /'(0.900) Error

0.850 0.75128 0.902 0.78457 0.001 0.62500 0.00339
0.880 0.77074 0.905 0.78643 0.002 0.62250 0.00089
0.890 0.77707 0.910 0.78950 0.005 0.62200 0.00039
0.895 0.78021 0.920 0.79560 0.010 0.62150 -0.00011
0.898 0.78208 0.950 0.81342 0.020 0.62150 -0.00011
0.899 0.78270 1.000 0.84147 0.050 0.62140 -0.00021

0.100 0.62055 -0.00106
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4.9 Numerical Differentiation 169

The optimal choice for h appears to lie between 0.005 and 0.05. We can use calculus
to verify (see Exercise 13) that a minimum for

e h2

e(h ) = - + — Af,
n o

occurs at h = y/3e / M , where

M = max |/'"(*)|= max |cosx\ = cos0.8 ^ 0.69671.
jt [0.800.1.00) x [0.800.1.00]

Because values of / are given to five decimal places, we will assume that the round-off

error is bounded by e = 5 x 10-6. Therefore, the optimal choice of h is approximately

/1 =
3(0.000005)

0.69671
% 0.028,

which is consistent with the results in Table 4.12.
In practice, we cannot compute an optimal h to use in approximating the derivative,

because we have no knowledge of the third derivative of the function. But we must remain
aware that reducing the step size will not always improve the approximation.

We have considered only the round-off error problems that are presented by the Three-
Point Midpoint formula, but similar difficulties occur with all the differentiation formulas.
The reason for the problems can be traced to the need to divide by a power of h. As we
found in Section 1.4 (see, in particular, Example 1), division by small numbers tends to

exaggerate round-off error, and this operation should be avoided if possible. In the case
of numerical differentiation, it is impossible to avoid the problem entirely, although the
higher-order methods reduce the difficulty.

Keep in mind that, as an approximation method, numerical differentiation is unstable,

because the small values of h needed to reduce truncation error cause the round-off error
to grow. This is the first class of unstable methods that we have encountered, and these
techniques would be avoided if it were possible. However it is not, because these formulas

are needed in Chapters 11 and 12 for approximating the solutions of ordinary and partial-
differential equations.

Methods for approximating higher derivatives of functions using Taylor polynomials

can be derived as was done when approximating the first derivative or by using an averaging
Keep in mind that difference technique that is similar to that used for extrapolation. These techniques, of course, suffer
method approximations can from the same stability weaknesses as the approximation methods for first derivatives, but
be unstable. they are needed for approximating the solution to boundary value problems in differential

equations. The only one we will need is a Three-Point Midpoint formula, which has the

following form.

Three-Point Midpoint Formula for Approximating f"

If / (4 ) exists on the interval containing XQ — h and x$ + h , then

/BC*0) = ^[/(*o- h ) - 2 f ( xo ) + f (xo + /.)]-^/
(4,«).

for some number f between XQ — h and x$ + h.
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170 C H A P T E R 4 Numerical Integration and Differentiation

EXERCISE SET 4.9

l.

2.

3.

4.

5.

6.

7.

8.

Use the forward-difference formulas and backward-difference formulas to determine each missing
entry in the following tables.
a. x f i x ) f i x ) b. X f i x ) f i x )

0.5 0.4794 0.0 0.00000

0.6 0.5646 0.2 0.74140
0.7 0.6442 0.4 1.3718

The data in Exercise 1 were taken from the following functions. Compute the actual errors in Exercise 1,

and find error bounds using the error formulas.

a. /(x) = sin* b. /(x) = e* — l x 2 + 3x — 1

Use the most accurate three-point formula to determine each missing entry in the following tables.

X f i x ) f i x )

1.1 9.025013
1.2 11.02318
1.3 13.46374

1.4 16.44465

X f i x ) f i x )

8.1 16.94410

8.3 17.56492
8.5 18.19056
8.7 18.82091

X f i x ) f i x )

2.9 -4.827866
3.0 -4.240058

3.1 —3.496909
3.2 -2.596792

X f i x ) /'(*)

2.0 3.6887983
2.1 3.6905701
2.2 3.6688192
2.3 3.6245909

The data in Exercise3were taken from the following functions. Compute the actualerrors in Exercise 3,

and find error bounds using the error formulas.
a. f i x ) = e2x b. /(x) = x lnx

c. f i x ) = x cosx — x 2 sinx d. f ( x ) = 2(lnx)2 + 3sin*
Use the formulas given in this section to determine, as accurately as possible,approximations for each

missing entry in the following tables.

X f i x ) f i x ) b. x f i x )

2.1 -1.709847 -3.0 9.367879
2.2 -1.373823 -2.8 8.233241
2.3 -1.119214 -2.6 7.180350
2.4 -0.9160143 -2.4 6.209329
2.5 -0.7470223 -2.2 5.320305

2.6 -0.6015966 -2.0 4.513417

The data in Exercise5 were taken from the following functions. Compute the actual errors in Exercise5,

and find error bounds using the error formulas.
a. f ( x ) = tanx b. f ( x ) = e + x2

Let /(x) = cos 7i x.Use the Three-Point Midpoint formula for f " and the values of /(x ) at x = 0.25,

0.5, and 0.75 to approximate /"(0.5).Compare this result to the exact value and to the approximation
found in Exercise 7 of Section 3.5. Explain why this method is particularly accurate for this problem.

Let f ( x ) = 3xe* - cosx. Use the following data and the Three-Point Midpoint formula for /" to

approximate /"(1.3) with h = 0.1 and with h = 0.01.

X 1.20 1.29 1.30 1.31 1.40

f i x ) 11.59006 13.78176 14.04276 14.30741 16.86187

Compare your results to /"(1.3).
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4.9 Numerical Differentiation 171

9. Use the following data and the knowledge that the first five derivatives of / were bounded on [1, 5]

by 2, 3, 6, 12, and 23, respectively, to approximate /'(3) as accurately as possible. Find a bound for
the error.

X 1 2 3 4 5

f i x ) 2.4142 2.6734 2.8974 3.0976 3.2804

10.
11.

Repeat Exercise 9, assuming instead that the third derivative of / is bounded on [1, 5J by 4.
Analyze the round-off errors for the formula

f ixo) =
/(*0 + ft) - /(*o)

h \ f"(So).

Find an optimal h > 0 in terms of a bound M for /" on (x0, x0 + h ).
12. All calculus students know that the derivative of a function / at x can be defined as

f ix )
h-*0 h

Choose your favorite function /, nonzero number x , and computer or calculator. Generate approxi-

mations f '
n ( x ) to / '(-*) by

13.

/»=
f i x + 10-")- f ( x )

10 "

for n = 1, 2, ... .20 and describe what happens.

Consider the function

e h2

'(*) = h
+1M

'

where M is a bound for the third derivative of a function. Show that e(h ) has a minimum at y/3e / M .
14. The forward-difference formula can be expressed as

/'(*o) = + h ) ~ /(*»)]- - j f ' (xo) + 0 (h3 ).

Use extrapolation on this formula to derive an 0(/i 3) formula for f\xo).
15. In Exercise 7 of Section 3.4, data were given describing a car traveling on a straight road.That problem

asked to predict the position and speed of the car when t = 10s. Use the following times and positions
to predict the speed at each time listed.

Time 0 3 5 8 10 13

Distance 0 225 383 623 742 993

16. In a circuit with impressed voltage £( t ) and inductance L, Kirchhoff’s first law gives the relationship

„ di
£(t ) = L-+ Ri ,

at

where R is the resistance in the circuit and i is the current. Suppose we measure the current for several

values of t and obtain:

t 1.00 1.01 1.02 1.03 1.0

i 3.10 3.12 3.14 3.18 3.24

where t is measured in seconds, i is in amperes, the inductance L is a constant 0.98 henries, and the

resistance is 0.142 ohms. Approximate the voltage £(t ) when t = 1.00, 1.01, 1.02, 1.03, and 1.04.
17. Derive a method for approximating /"(x0) whose error term is of order h2 by expanding the function

/ in a third Taylor polynomial about XQ and evaluating at XQ + h and x0 - h.
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172 C H A P T E R 4 Numerical Integration and Differentiation

4.10 Survey of Methods and Software

In this chapter we considered approximating integrals of functions of one , two, or three
variables and approximating the derivatives of a function of a single real variable.

The Midpoint rule. Trapezoidal rule, and Simpson’s rule were studied to introduce the
techniques and error analysis of quadrature methods. Composite Simpson’s rule is easy to

use and produces accurate approximations unless the function oscillates in a subinterval of
the interval of integration. Adaptive quadrature can be used if the function is suspected of
oscillatory behavior. To minimize the number of nodes and also increase the accuracy, we
studied Gaussian quadrature. Romberg integration was introduced to take advantage of the
easily-applied Composite Trapezoidal rule and extrapolation.

Most software for integrating a function of a single real variable is based on the adaptive
approach or extremely accurate Gaussian formulas. Cautious Romberg integration is an
adaptive technique that includes a check to make sure that the integrand is smoothly behaved
over subintervals of the integral of integration. This method has been successfully used in
software libraries. Multiple integrals are generally approximated by extending good adaptive

methods to higher dimensions. Gaussian-type quadrature is also recommended to decrease
the number of function evaluations.

The main routines in both the IMSL and NAG Libraries are based on QUADPACK:
A Subroutine Package for Automatic Integration by R. Piessens, E. de Doncker-Kapenga,

C. W. Uberhuber, and D. K . Kahaner published by Springer-Verlag in 1983 [PDUK]. The
routines are also available as public domain software, at http://www.netlib.org/quadpack.

The main technique is an adaptive integration scheme based on the 21-point Gaussian-
Kronrod rule using the 10-point Gaussian rule for error estimation. The Gaussian rule
uses the 10 points JCI , . . . , X\o and weights w j , . . . , vt> io to give the quadrature formula

Wi/fo) to approximate f ( x )d x . The additional points x \ \ , . . . ,*21 and the new

weights i» i , . . . , V 2\ are then used in the Kronrod formula, v,- /(*,• ). The results of
the two formulas are compared to eliminate error. The advantage in using x \ , . . . ,*10 in
each formula is that / needs to be evaluated at only 21 points. If independent 10- and 21-
point Gaussian rules were used, 31 function evaluations would be needed. This procedure
also permits endpoint singularities in the integrand. Other subroutines allow user specified
singularities and infinite intervals of integration. Methods are also available for multiple

integrals.

Although numerical differentiation is unstable, derivative approximation formulas are
needed for solving differential equations. The NAG Library includes a subroutine for the
numerical differentiation of a function of one real variable, with differentiation to the
fourteenth derivative being possible. An IMSL function uses an adaptive change in step

size for finite differences to approximate a derivative of / at x to within a given tolerance.

Both packages allow the differentiation and integration of interpolator cubic splines.

For further reading on numerical integration, we recommend the books by Engels [EJ
and by Davis and Rabinowitz [DRJ . For more information on Gaussian quadrature, see
Stroud and Sccrest [StSJ . Books on multiple integrals include those by Stroud [Stro] and
by Sloan and Joe [SJ].
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