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Difference equations were used
and popularized by Isaac Newton
in the last quarter of the 17th
century, but many of these
techniques had previously been
developed by Thomas Harriot
(1561-1621) and Henry Briggs
(1561-1630). Harriot made
significant advances in navigation
techniques, and Briggs was the
person most responsible for the
acceptance of logarithms as an
aid to computation.

4.9 Numerical Differentiation

At the beginning of this chapter we stated that derivative approximations are not as frequently

needed as integral approximations. This is true for the approximation of single derivatives,

but derivative approximation formulas are used extensively for approximating the solutions

to ordinary and partial differential equations, a subject we consider in Chapters 11 and 12.
The derivative of the function f at x is defined as

too x _ o J o +h) — fxo)
R
This formula gives an obvious way to generate an approximation to f’(xg); simply compute

fxo+ k) — f(x0)
h

for small values of h. Although this may be obvious, it is not very successful, due to our
old nemesis, round-off error. But it is certainly the place to start.

To approximate f'(xp), suppose first that xy € (a, b), where f € C?*[a, b), and that
x1 = xp+h forsome h # 0 that is sufficiently small to ensure that x; € [a, b]. We construct
the first Lagrange polynomial, Py 1, for f determined by x¢ and x, with its error term

£ = Byt + ETI0E=I) ey

_ fo)x—x0—h) | flo+h)(x—x)  (x—x0)(x —xo
- —h i h 2

=) ey

for some number & (x) in [a, b]. Differentiating this equation gives

' h)— = = —h "
o= flxo+ ; S (xp) D, (x xc)(x2 xq )f {é(x)}]
- Sflxo+ k; — fxo) + 2(x —szu) = hf”(é(x])
4 G0 b (e,
S0
£l = flxo+ k; = f(xul,
with error
2(x (x — xp)(x — xp —

Tt Dl I 2 b.(f €.

2 2

There are two terms for the error in this approximation. The first term involves f(£(x)).
which can be bounded if we have a bound for the second derivative of f. The second part
of the truncation error involves D, f"(E(x)) = f"(£(x)) -&'(x), which generally cannot be
estimated because it contains the unknown term &' (x). However, when x is xq, the coefficient
of D, f"(£(x)) is zero. In this case, the formula simplifies to the following:
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164 CHAPTER 4 = Numerical Integration and Differentiation

Two-Point Formula
If f" exists on the interval containing xg and xq + h, then
(xo+h) — f(x) h
gy = LRED =T B g,
h 2
for some number £ between xq and xg + A.

Suppose that M is a bound on | f"(x)| for x € [a, b]. Then for small values of h,
the difference quotient [ f (xo + k) — f (x0)]/h can be used to approximate f’(xg) with an
error bounded by M |k|/2. This is a two-point formula known as the forward-difference
formula if i > 0 (see Figure 4.20) and the backward-difference formula if & < 0.

Figure 4.20
Yy
Slope f'(xy)
flxg + h) = flxg)
Slope ——————%
h
xlU Xy +h ]

Example 1 Usethe forward-difference formulato approximate the derivative of f(x) =Inxatxy = 1.8
usingh = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Solution The forward-difference formula
F(1.84h)— f(1.8)
h
with h = 0.1 gives
In1.9—In1.8  0.64185389 — 0.58778667

o - =5 = 0.5406722.

Because f”(x) = —1/x*and 1.8 < & < 1.9, a bound for this approximation error is

@)1 _ 1l _ 01
2 282~ 2(18)

The approximation and error bounds when A = 0.05 and A = 0.01 are found in a similar
manner and the results are shown in Table 4.9.

= 0.0154321.
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49 Numerical Differentiation 165

Table 4.9

f(L8+h) — f(1.8) L]

A £-5448) h 2(1.8)°
0.1 0.64185389 0.5406722 0.0154321
0.05 0.61518564 0.5479795 0.0077160
0.01 0.59332685 0.5540180 0.0015432

Since f'(x) = 1/x, the exact value of f(1.8) is 0.555, and in this case the error bounds
are quite close to the true approximation error. ]

To obtain general derivative approximation formulas, suppose that xg, xi, ..., x, are
(n 4 1) distinct numbers in some interval / and that f € C"*'(J). Then

(x —xp) - (x —x,)

fE =) fEHL;x) + o

j=0

f“"*”(&(x)]

for some £(x) in /, where L ;(x) denotes the jth Lagrange coefficient polynomial for f at
Xp, Xi, ..., X,. Differentiating this expression gives

(x —x0)»+ (x = xp)

GETE | D

F@ =Y fa)Lix) + D, {

j=0

(x—x0)---(x —-‘n)_ {n+1)
+ — Bl D EE)]

Again we have a problem with the second part of the truncation error unless x is one of
the numbers x;. In this case, the multiplier of D, [ f™+!(&(x))] is zero, and the formula
becomes

' - ' ('E(x ))
f(xk3=§f(x;)1ﬁ(x*)+ 5 H)f H(xk
J#k

Three-Point Formulas
Applying this technique using the second Lagrange polynomial at xy, x; = xp + &, and
Xy = xp + 2h produces the following formula.

Three-Point Endpoint Formula
If f" exists on the interval containing xq and xq + 2k, then

2 1
f'xo0) = %[—31'(10) +4f(xo+h) — f(x0+2h)] + %f" @),

for some number £ between x; and x; + 2h.

This formula is useful when approximating the derivative at the endpoint of an interval.
This situation occurs, for example, when approximations are needed for the derivatives used
for the clamped cubic splines. Left endpoint approximations are found using A > 0, and
right endpeint approximations using h < 0.
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166 CHAPTER 4 « Numerical Integration and Differentiation

When approximating the derivative of a function at an interior point of an interval, it is
better to use the formula that is produced from the second Lagrange polynomial at xo — h,
xp, and xg + A.

Three-Point Midpoint Formula
If f'” exists on the interval containing xy — h and xp + h, then

2
FG0) = U G+ B = fla — W) — o £ @),
for some number & between xo — h and xo + h.

The error in the Midpoint formula is approximately half the error in the Endpoint
formulaand f needs to be evaluated at only two points whereas in the Endpoint formula three
evaluations are required. Figure 4.21 gives an illustration of the approximation produced
from the Midpoint formula.

Figure 4.21
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These methods are called three-point formulas (even though the third point, f(xg),
does not appear in the Midpoint formula). Similarly, there are five-point formulas that
involve evaluating the function at two additional points, whose error term is O (h*). These
formulas are generated by differentiating fourth Lagrange polynomials that pass through
the evaluation points. The most useful is the Midpoint formula.

Five-Point Formulas
Five-Point Midpoint Formula
If £ exists on the interval containing xo — 2k and xp + 2h, then

.h"
fixo) = %If(xn —2h) — 8 f(xo — h) + 8f(x0+ h) — flxo +2h)] + Ef"’{{‘).

for some number £ between xg — 2h and xg + 2h.
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Five-Point Endpoint Formula

49 Numerical Differentiation 167

There is another five-point formula that is useful, particularly with regard to the clamped
cubic spline interpolation.

If f©) exists on the interval containing xo and xg + 4h, then
; 1
)= E[—ZSf(xu) + 48 f(xo + h) — 36 f (xp + 2h)

4
+ 16 f (xg + 3h) — 3 f (xg + dh)] -+ ’%f"‘(s),

for some number £ between x, and x; + 4h.

Example 2
Table 4.10
x f(x)

1.8 10.889365
1.9 12.703199
2.0 14778112
2.1 17.148957
2.2 19.855030

Left-endpoint approximations are found using 2 > 0, and right-endpoint approxima-
tions are found using i < 0.

Values for f(x) = xe* are given in Table 4.10. Use all the applicable three-point and
five-point formulas to approximate f'(2.0).

Solution The data in the table permit us to find four different three-point approximations:
Three-Point Endpoint Formula with h = 0.1:
%2[—3 F(2.0) +4£(2.1) — f£(2.2)] = 5[—3(14.778112) + 4(17.148957) — 19.855030)]
= 22.032310,
Three-Point Endpoint Formula with » = —0.1:
_%_2[—3)"(2.0) +4f(1.9) = f(1.8)] = =5[-3(14.778112) + 4(12.703199)
—10.889365)] = 22.054525,

Three-Point Midpoint Formula with & = 0.1:

‘%2 [f(2.1) = f(1.9)] = 5(17.148957 — 12.703199) = 22.228790,
Three-Point Midpoint Formula with A = 0.2:

0?4[ f22) — f(1.8)] = Z (19.855030 — 10.889365) = 22.414163.

The only five-point formula for which the table gives sufficient data is the midpoint
formula with & = 0.1.

Five-Point Midpoint Formula with 7 = 0.1:
1 1
ﬁ[f(l‘B) —-8f(19)+8f(2.1) - f(2.2)] = 1—5[10.889365 — 8(12.703199)
+ 8(17.148957) — 19.855030]
= 22.166999.

If we had no other information, we would accept the five-point midpoint approximation
using & = 0.1 as the most accurate. The true value for this problemis f'(2.0) = (2+1)e® =
22.167168. m
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168 CHAPTER 4 = Numerical Integration and Differentiation

Round-Off Error Instability

It is particularly important to pay attention to round-off error when approximating deriva-
tives. When approximating integrals in Section 4.3, we found that reducing the step size in
the Composite Simpson’s rule reduced the truncation error, and, even though the amount
of calculation increased, the total round-off error remained bounded. This is not the case
when approximating derivatives.

‘When applying a numerical differentiation technique, the truncation error will also
decrease if the step size is reduced, but only at the expense of increased round-off error. To
see why this occurs, let us examine more closely the Three-Point Midpoint formula:

]. hz o
f'(x0) = z—h[f(xu+fl) = flo—m]- gf .

Suppose that, in evaluating f (xo+h) and f(xy—h), we encounter round-off errors e(xy+h)
and e(xy — h). Then our computed values f(xp -+ h) and f(xy — h) are related to the true
values f(xq+ h) and f(xg— k) by

fGo+h)=Fo+h) +e(xo+h) and flxo—h)= Flxo—h)+elxo—h).
In this case, the total error in the approximation,

' Fo+h) —Flxo—h)  elxa+h)—e(xo—h) h*
fxo) — % = h = Ef &),
is due in part to round-off and in part to truncating. If we assume that the round-off errors,
e(xg % h), for the function evaluations are bounded by some number £ > 0 and that the
third derivative of f is bounded by a number M > 0, then

flo+h) — Flxo+h)| & K
=4 —M.
2h _ﬁ+ 6M

f(xo0) —

To reduce the truncation portion of the error, 2 M /6, we must reduce k. But as & is reduced,
the round-off portion of the error, &/ h, grows. In practice, then, it is seldom advantageous
to let i be too small, since the round-off error will dominate the calculations.

lllustration Consider using the values in Table 4.11 to approximate f'(0.900), where f(x) = sinx.
The true value is c0s0.900 = 0.62161. The formula

£(0.900 + k) — £(0.900 — k)
2h :

with different values of h, gives the approximations in Table 4.12.

£'(0.900) ~

Table 4.11 Table 4.12

x sinx x sinx

Approximation

0.800 0.71736 0.901 0.78395 h to £(0.900) Error
0.850 0.75128 0.902 0.78457 0.001 0.62500 0.00339
0.880 0.77074 0.905 0.78643 0.002 0.62250 0.00089
0.890 0.77707 0910 0.78950 0.005 0.62200 0.00039
0.895 0.78021 0920 0.79560 0.010 0.62150 —0.00011
0.898 0.78208 0950 0.81342 0.020 0.62150 —0.00011
0.899 0.78270 1.000 0.84147 0.050 0.62140 —0.00021

0.100 0.62055 —0.00106
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49 Numerical Differentiation 169

The optimal choice for # appears to lie between 0.005 and 0.05. We can use calculus
to verify (see Exercise 13) that a minimum for

s h?
B) =+ M,
e(h) h 4 3
occurs at h = +/3e/M, where
= max |f"(x)l= max |cosx|=cos0.8~ 0.69671.
xe[0.800,1.00] +e[0.800,1.00]

Because values of f are given to five decimal places, we will assume that the round-off
error is bounded by £ = § x 1079, Therefore, the optimal choice of 4 is approximately

h=1 3(3? UDU_??S) = 0.028,

which is consistent with the results in Table 4.12.

In practice, we cannot compute an optimal & to use in approximating the derivative,
because we have no knowledge of the third derivative of the function. But we must remain
aware that reducing the step size will not always improve the approximation. O

We have considered only the round-off error problems that are presented by the Three-
Point Midpoint formula, but similar difficulties occur with all the differentiation formulas.
The reason for the problems can be traced to the need to divide by a power of h. As we
found in Section 1.4 (see, in particular, Example 1), division by small numbers tends to
exaggerate round-off error, and this operation should be avoided if possible. In the case
of numerical differentiation, it is impossible to avoid the problem entirely, although the
higher-order methods reduce the difficulty.

Keep in mind that, as an approximation method, numerical differentiation is unstable,
because the small values of & needed to reduce truncation error cause the round-off error
to grow. This is the first class of unstable methods that we have encountered, and these
techniques would be avoided if it were possible. However it is not, because these formulas
are needed in Chapters 11 and 12 for approximating the solutions of ordinary and partial-
differential equations.

Methods for approximating higher derivatives of functions using Taylor polynomials
can be derived as was done when approximating the first derivative or by using an averaging

Keep in mind that difference technique that is similar to that used for extrapolation. These techniques, of course, suffer
method approximations can from the same stability weaknesses as the approximation methods for first derivatives, but
be unstable. they are needed for approximating the solution to boundary value problems in differential

equations. The only one we will need is a Three-Point Midpoint formula, which has the
following form.

Three-Point Midpoint Formula for Approximating f"'
If £ exists on the interval containing xo — k and x; + h, then

2
FG0) = 515 o = W) = 2f Go) + f s+ W] = 13 FOE),

for some number & between xq — h and xo + h.
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170 CHAPTER 4 = Numerical Integration and Differentiation

EXERCISE SET 49

1. Use the forward-difference formulas and backward-difference formulas to determine each missing
entry in the following tables.

2. The datain Exercise | were taken from the following functions. Compute the actual errors in Exercise 1,
and find error bounds using the error formulas.

a.  f(x) =sinx b. flx)=¢ —-2x"+3x-1
3. Use the most accurate three-point formula to determine each missing entry in the following tables.
a.  x fx) | f&) b x f@ | f®
1.1 | 9.025013 8.1 16.94410
1.2 | 11.02318 8.3 | 17.56492
1.3 | 1346374 8.5 | 18.19056
1.4 | 1644465 8.7 | 18.82091
e x f@® | @ d x f® | @
29 | —4.827866 2.0 | 3.6887983
3.0 | —4.240058 2.1 | 3.6905701
3.1 | —3.496909 2.2 | 3.6688192
32 | -2.596792 23 | 3.6245909

4. The datain Exercise 3 were taken from the following functions. Compute the actual errors in Exercise 3,
and find error bounds using the error formulas,

a.  flx)=¢e* b. f(x)=xlnx
e f(x) =xcosx —x*sinx d.  f(x) =2(Inx)* 4 3sinx
5. Use the formulas given in this section to determine, as accurately as possible, approximations for each
missing entry in the following tables.
a x| f&® | f® b x| f@ | f@
2.1 | —1.709847 —3.0 | 9.367879
22 | —1.373823 —2.8 | 8.233241
23 | —1.119214 —2.6 | 7.180350
24 | —=0.9160143 -2.4 | 6.209329
2.5 | —0.7470223 —2.2 | 5.320305
2.6 | —0.6015966 =20 | 4513417

6. The datain Exercise 5 were taken from the following functions. Compute the actual errors in Exercise 5,
and find error bounds using the error formulas.
a. f(x)=tanx b.  f(x) =& +x*

7.  Let f(x) = cos mx. Use the Three-Point Midpoint formula for £ and the values of f(x) atx = 0.25,
0.5, and 0.75 to approximate f"(0.5). Compare this result to the exact value and to the approximation
found in Exercise 7 of Section 3.5. Explain why this method is particularly accurate for this problem.

8. Let f(x) = 3xe* — cosx. Use the following data and the Three-Point Midpoimt formula for f" to
approximate f(1.3) with & = 0.1 and with h = 0.01.

x (120|129 [130  |131 [ 140
f() | 1159006 | 13.78176 | 14.04276 | 1430741 | 1686187

Compare your results to f"(1.3).
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10.
11.

14.

15.

16.

17.

49 Numerical Differentiation m

Use the following data and the knowledge that the first five derivatives of f were bounded on [1, 5]
by 2, 3, 6, 12, and 23, respectively, to approximate f'(3) as accurately as possible. Find a bound for

the error.
& |1 | 2 | 3 | 4 | 5
fx) | 24142 | 26738 | 2.8974 | 3.0076 | 32804

Repeat Exercise 9, assuming instead that the third derivative of f is bounded on [1, 5] by 4.
Analyze the round-off errors for the formula

footh) = flx) _h

f(xo) = h 'if"(é'n)v

Find an optimal & > 0 in terms of a bound M for f on (xg, xo + h).
All calculus students know that the derivative of a function f at x can be defined as

o) =t LEHR = F@)
F=a h ’

Choose your favorite function f, nonzero number x, and computer or calculator. Generate approxi-
mations f/(x) to f'(x) by

Flx+107") - fx)

L) = o
forn=1,2,...,20 and describe what happens.
Consider the function
e h?
hy=-+ —M,
e(h) h + 6 M

where M is a bound for the third derivative of a function. Show that e(h) has a minimum at J/3e/M.
The forward-difference formula can be expressed as

1 h h?
fl(xg) = ;[f(xu +h) = flx)] = E.f"(xu) = Ffm(n\:rr) + O(h*).

Use extrapolation on this formula to derive an O (k") formula for f'(xo).
In Exercise 7 of Section 3.4, data were given describing a car traveling on a straight road. That problem
asked to predict the position and speed of the car when ¢ = 10 5. Use the following times and positions
to predict the speed at each time listed.

Time |0| 3| Sl S|IG|13

Distance | 0 | 225 | 383 | 623 | 742 | 993

In a circuit with impressed voltage £(r) and inductance L, Kirchhoff’s first law gives the relationship
di
= L— <4+ Ri,
£(1) = + Ri

where R is the resistance in the circuit and i is the current. Suppose we measure the current for several
values of t and obtain:

t | 100 | 101 | 102 | 1.03 | 10
i 310|312 ] 314 | 308 | 324

where ¢ is measured in seconds, i is in amperes, the inductance L is a constant 0.98 henries, and the
resistance is 0.142 ohms. Approximate the voltage £(r) when t = 1.00, 1.01, 1.02, 1.03, and 1.04.
Derive a method for approximating f"(x,) whose error term is of order h* by expanding the function
f in a third Taylor polynomial about x, and evaluating at x, + A and x; — A.
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172 CHAPTER 4 « Numerical Integration and Differentiation

- 410 Survey of Methods and Software

In this chapter we considered approximating integrals of functions of one, two, or three
variables and approximating the derivatives of a function of a single real variable.

The Midpoint rule, Trapezoidal rule, and Simpson’s rule were studied to introduce the
techniques and error analysis of quadrature methods. Composite Simpson’s rule is easy to
use and produces accurate approximations unless the function oscillates in a subinterval of
the interval of integration. Adaptive quadrature can be used if the function is suspected of
oscillatory behavior. To minimize the number of nodes and also increase the accuracy, we
studied Gaussian quadrature. Romberg integration was introduced to take advantage of the
easily-applied Composite Trapezoidal rule and extrapolation.

Most software for integrating a function of a single real variable is based on the adaptive
approach or extremely accurate Gaussian formulas. Cautious Romberg integration is an
adaptive technique that includes a check to make sure that the integrand is smoothly behaved
over subintervals of the integral of integration. This method has been successfully used in
software libraries. Multiple integrals are generally approximated by extending good adaptive
methods to higher dimensions. Gaussian-type quadrature is also recommended to decrease
the number of function evaluations.

The main routines in both the IMSL and NAG Libraries are based on QUADPACK:
A Subroutine Package for Automatic Integration by R. Piessens, E. de Doncker-Kapenga,
C. W. Uberhuber, and D. K. Kahaner published by Springer-Verlag in 1983 [PDUK]. The
routines are also available as public domain software, at http://www.netlib.org/quadpack.
The main technique is an adaptive integration scheme based on the 21-point Gaussian-
Kronrod rule using the 10-point Gaussian rule for error estimation. The Gaussian rule
uses the 10 points xy, ..., x;o and weights wy, ..., wo to give the quadrature formula
Y19, w; £ (x;) to approximate [ f(x)dx. The additional points xyy, ... , x2; and the new
weights vy, ... , vy are then used in the Kronrod formula, ?i, v; f(x;). The results of
the two formulas are compared to eliminate error. The advantage in using xy, ... ,xjp in
each formula is that f needs to be evaluated at only 21 points. If independent 10- and 21-
point Gaussian rules were used, 31 function evaluations would be needed. This procedure
also permits endpoint singularities in the integrand. Other subroutines allow user specified
singularities and infinite intervals of integration. Methods are also available for multiple
integrals.

Although numerical differentiation is unstable, derivative approximation formulas are
needed for solving differential equations. The NAG Library includes a subroutine for the
numerical differentiation of a function of one real variable, with differentiation to the
fourteenth derivative being possible. An IMSL function uses an adaptive change in step
size for finite differences to approximate a derivative of f at x to within a given tolerance.
Both packages allow the differentiation and integration of interpolatory cubic splines.

For further reading on numerical integration, we recommend the books by Engels [E]
and by Davis and Rabinowitz [DR]. For more information on Gaussian quadrature, see
Stroud and Secrest [StS]. Books on multiple integrals include those by Stroud [Stro] and
by Sloan and Joe [S]].
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