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If n; molecules of K;Cr;0, n; molecules of H,O, and n; molecules of S are originally available, the
following differential equation describes the amount x(t) of KOH after time #:

dx _ o 25 (= %Y (= Y

dr AT I 2T )
where k is the velocity constant of the reaction. If k = 6.22 x 107", n; = n, = 2 x 10°, and
n; = 3 x 10°, use the Runge-Kutta method of order 4 to determine how many units of potassium
hydroxide will have been formed after 0.2 s.

20.  Show that Heun's Method can be expressed in difference form, similar to that of the Runge-Kutta
method of order 4, as

Wy =,
ki = hf(t,wi),
h 1
k= hf(f.‘ + E.W,' + Ekg).
2h 2
b= if (1 owi+ 2a),

1
Wil =W + a(kj + 3k3),

foreachi =0,1,... N —1.

‘ _ 5.4 Predictor-Corrector Methods

The Taylor and Runge-Kutta methods are examples of one-step methods for approximating
the solution to initial-value problems. These methods use w; in the approximation w;.;
to y(#;.,) but do not involve any of the prior approximations wg, wy, ..., w;_;. Generally
some functional evaluations of f are required at intermediate points, but these are discarded
as soon as w;. is obtained.

Since |y(t;) — w ;| decreases in accuracy as j increases, better approximation methods
can be derived if, when approximating y(f;+;), we include in the method some of the
approximations prior to w;. Methods developed using this philosophy are called multistep
methods. In brief, one-step methods consider what occurred at only one previous step;
multistep methods consider what happened at more than one previous step.

To derive a multistep method, suppose that the solution to the initial-value problem

Dt frasish, vity@=a,

is integrated over the interval [#;, #;5]. Then

T fis
Y(tiar) = y(@) = f 'Yyt = f ' Fay@ar,
and

i+

Y(tier) = y0) + Fie, y())dt.

U]

Since we cannot integrate f (¢, y(t)) without knowing y(r), which is the solution to the
problem, we instead integrate an interpolating polynomial, P(z), for f (¢, y(¢)) determined
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192 CHAPTER 5 = Numerical Solution of Initial-Value Problems

by some of the previously obtained data points (fy, wo), (11, wi), ..., (f;, w;). When we
assume, in addition, that y(r;) = w;, we have

fi+1
y(rx+1)%wf+f P(t)drt.
L7

i

If w4 is the first approximation generated by the multistep method, then we need to
supply starting values wq, wy, ... , w,, for the method. These starting values are generated
using a one-step Runge-Kutta method with the same error characteristics as the multistep
method.

There are two distinct classes of multistep methods. In an explicit method, w; ., does
not involve the function evaluation f(#;..;,w;.;). A method that does depend in part on
f(tisy, wiey) is an implicit method.

Adams-Bashforth Explicit Methods

Some of the explicit multistep methods, together with their required starting values and
local error terms, are given next.

Adams-Bashforth Two-Step Explicit Method

Wy =, W) =,
h
Wisl = Wi + §[3f(1'.', wi) = fli-1, wi-1)l

wherei =1,2,..., N — 1, with local error % y"(;)h* for some p; in (t;—1, ti1).

Adams-Bashforth Three-Step Explicit Method

Wp=o, W, =a;, W) =,
h
Witl =W + E[23f(fh wi) = 16 f(ti—1, wi—1) + 5 f (-2, wi-2)]

wherei =2,3, ..., N — 1, with local error 3y® (u;)h* for some p; in (2, i+1).

Adams-Bashforth Four-Step Explicit Method

Wo =@, W) =@, W2 =0, Wi=aj,
h
Wit = w; + ﬁ[ssf(lnwﬂ =59 (-1, wi—1) + 37 f(ti2, wi—3) — 9F (ti-3, wi-3)]

wherei = 3,4, ..., N — 1, with local error %y‘:s)(p,,-)h5 for some p; in (f_3, t;+1)-
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54 Predictor-Corrector Methods 193

Adams-Bashforth Five-Step Explicit Method

Wo=a, Wi =0, Wa =0, Wa=03, Wqg =104

h
Wil =w; + m{lgﬂlf(f,, w) — 2774 f (g, wi—1)

+ 2616)‘(1,;2, Wi_a) — ]_274)‘.(1"—3, Wi_a) + 251}'(:;_4, Wi_a)]

wherei =4,5,..., N — 1, with local error =y (11,)h® for some g; in (t;_s, £i+1)-

Adams-Moulton Implicit Methods
Implicit methods use (.., f(#i.1, wix1)) as an additional interpolation node in the approx-
imation of the integral

fit1
f f, y()dt.
iy

Some of the more common implicit methods are listed next. Notice that the local error
of an (m — 1)-step implicit method is O(h™*'), the same as that of an m-step explicit
method. They both use m function evaluations, however, because the implicit methods use
f(tisy, wisy), but the explicit methods do not.

Adams-Moulton Two-Step Implicit Method

Wo=a, W) =uq)
h
Wigl = Wi + E[sf(fnh Wwiv1) + 81 (i, wi) — ftim1, wi)]

wherei = 1,2,..., N — 1, with local error — 2 y® (;)h* for some p; in (t—1, i +1)-

Adams-Moulton Three-Step Implicit Method

Wp=0o, W) =, W=y,
h
Wisl = Wi+ ﬁ[gf(fi+hwi+l) + 191, wi) = Sf(tiors wizy) + f(tiz2, wi2)],

wherei =2,3,..., N — 1, with local error — 255y (u1;)h* for some p; in (t;_2, t;+1).

Adams-Moulton Four-Step Implicit Method
Wo=0o, W) = @, Wa =0, W=,
Wist = Wi+ 2 5L f 1, i) + 646 1) — 264 £t w1
+ 106 f (t;—2, wi—2) — 19f (ti_3, wi3)]
wherei =3,4,..., N — 1, with local error — ;25 (u1; ) for some p; in (#;_3, fi11).
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194 CHAPTER 5 = Numerical Solution of Initial-Value Problems

It is interesting to compare an m-step Adams-Bashforth explicit method to an (m — 1)-
step Adams-Moulton implicit method. Both require m evaluations of f per step, and both
have the terms ¥V (11; )™ " in their local errors. In general, the coefficients of the terms
involving f in the approximation and those in the local error are smaller for the implicit
methods than for the explicit methods. This leads to smaller truncation and round-off errors
for the implicit methods.

Example 1 In Example 2 of Section 5.3 (see Table 5.8 on page 188) we used the Runge-Kutta method
of order 4 with h = 0.2 to approximate the solutions to the initial value problem

y=y—1'4+1, 0<t<2, y0)=0S5.
The first approximations were found to be y(0) = wq = 0.5, y(0.2) = w; = 0.8292933,
v(0.4) = w, = 1.2140762, and y(0.6) = wy = 1.6489220. Use these as starting values
for the fourth-order Adams-Bashforth method to compute new approximations for y(0.8)

and y(1.0), and compare these new approximations to those produced by the Runge-Kutta
method of order 4.

Solution For the fourth-order Adams-Bashforth we have
0.2
y(0.8) = wy =wa+ E(SSJ"(O.Q w3) — 59 £(0.4, wa) + 37F(0.2, w;) — 9£(0, wp))

0.2
= 16489220 + - (55£(0.6, 1.6489220) — 59 (0.4, 1.2140762)

+37£(0.2,0.8292933) — 9 £(0, 0.5))

= 1.6489220 + 0.0083333(55(2.2889220) — 59(2.0540762)
+ 37(1.7892933) — 9(1.5))

=2.1272892,

and
yLO) = ws=wy + % (35 (0.8, ws) — 591 (0.6, wa) + 37 f(0.4, wz) — 97 (0.2, wy))

=2.1272892 + 0;2:(55 £(0.8,2.1272892) — 59 £(0.6, 1.6489220)

+377(0.4, 1.2140762) — 9£(0.2, 0.8292933))
=2.1272892 + 0.0083333(55(2.4872892) — 59(2.2889220)
+37(2.0540762) — 9(1.7892933))
=2.6410533,

The errors for these approximations at ¢ = 0.8 and ¢ = 1.0 are, respectively,

[2.1272295 — 2.1272892| = 5.97 x 107 and [2.6410533 — 2.6408591| = 1.94 x 10~*,
The corresponding Runge-Kutta approximations had errors

[2.1272027 — 2.1272892| = 2.69 x 10~ and |2.6408227 — 2.6408591| = 3.64 x 1077,
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54 Predictor-Corrector Methods 195

The implicit Adams-Moulton methods generally give considerably better results than
the explicit Adams-Bashforth method of the same order. However, the implicit methods
have the inherent weakness of first having to convert the method algebraically to an explicit
representation for w;.. ;. That this procedure can become difficult, if not impossible, can be
seen by considering the elementary initial-value problem

y =e¥, for0<t=<025 wity0) =1.
Since f(t, y) = e, the Adams-Moulton Three-Step method has

Wit =W+ %[99*‘*‘ + 19*F — Se¥i-1 4 g*i-2]

as its difference equation, and this equation cannot be solved explicitly for w;.;. We could
use Newton's method or the Secant method to approximate w; ., but this complicates the
procedure considerably.

Predictor-Corrector Methods

In practice, implicit multistep methods are not used alone. Rather, they are used to im-
prove approximations obtained by explicit methods. The combination of an explicit and
implicit technique is called a predictor-corrector method. The explicit method predicts
an approximation, and the implicit method corrects this prediction.

Consider the following fourth-order method for solving an initial-value problem. The
first step is to calculate the starting values wg, wy, wy, and w; for the explicit Adams-
Bashforth Four-Step method. To do this, we use a fourth-order one-step method, specifically,
the Runge-Kutta method of order 4. The next step is to calculate an approximation, w4, to
¥(t4) using the explicit Adams-Bashforth Four-Step method as predictor:

h
Wap = W3+ 51551‘{?3. w3) — 59f (t2, wa) + 37 f (11, w1) — 9 (to, wo)l.

This approximation is improved by use of the implicit Adams-Moulton Three-Step method
as corrector:

Wy =wi+ %igf(fan Wap) + 19 (t3, wa) — 5 f (t2, w2) + f (11, wi)).

The value wy is now used as the approximation to y(ts). Then the technique of using the
Adams-Bashforth method as a predictor and the Adams-Moulton method as a corrector is
repeated to find ws, and ws, the initial and final approximations to y(#s). This process is
continued until we obtain an approximation to y(ty) = y(b).

Program PRCORMS53 is based on the Adams-Bashforth Four-Step method as predictor
and one iteration of the Adams-Moulton Three-Step method as corrector, with the starting
values obtained from the Runge-Kutta method of order 4.

Example 2 Apply the Adams fourth-order predictor-corrector method with & = 0.2 and starting values
from the Runge-Kutta fourth-order method to the initial-value problem

Yy=y—-1>+1, 0<tr<2, y0)=05.
Solution ‘This is a continuation and modification of the problem considered in Example 1

at the beginning of the section. In that example, we found that the starting approximations
from Runge-Kutta are

¥(0) = wp = 0.5, y(0.2) ~ w; = 0.8292933, y(0.4) ~w; = 1.2140762, and
¥(0.6) ~ wy = 1.6489220.
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19 CHAPTER 5 = Numerical Solution of Initial-Value Problems

and the fourth-order Adams-Bashforth method gave
0.2
¥(0.8) & wy, = w3+ 7 [55£(0.6, w3) — 59 (0.4, w2) + 37 (0.2, w1) — 9 (0, wo)]

2
= 1.6489220 + % [55£(0.6, 1.6489220) — 59 £ (0.4, 1.2140762)

+ 37 £(0.2, 0.8292933) — 9£(0, 0.5)]

= 1.6489220 + 0.0083333[55(2.2889220) — 59(2.0540762)
+37(1.7892933) — 9(1.5)]

= 2.1272892.

We will now use wy, as the predictor of the approximation to y(0.8) and determine the
corrected value wy, from the implicit Adams-Moulton method. This gives

¥(0.8) = wy =w3 + %[Qf({}.& wap) + 19 £(0.6, wi) — 5 (0.4, wa) + f(0.2,w))]

0.2
= 1.6489220 + 2 [9£(0.8,2.1272892) + 19 (0.6, 1.6489220)

—5£(0.4, 1.2140762) + £(0.2,0.8292933)]

= 1.6489220 + 0.0083333[9(2.4872892) + 19(2.2889220)
— 5(2.0540762) + (1.7892933)]

= 2.1272056.

Now we use this approximation to determine the predictor, ws,, for y(1.0) as
0.2
y(1.0) ~ wsp, =wa+ % [55f(0.8, wa) = 59£(0.6, wa) + 37 (0.4, wa) = 9£(0.2, wy)]

=2.1272056 + % [55f(0.8, 2.1272056) — 59 f (0.6, 1.6489220)

+ 37 (0.4, 1.2140762) — 9(0.2, 0.8292933)]

= 2.1272056 + 0.0083333[55(2.4872056) — 59(2.2889220)
+ 37(2.0540762) — 9(1.7892933)]

=2.6409314,

and correct this with

Y(LO) mws =wy + {5[91'(1-01 wsp) + 19 (0.8, wi) — 51(0.6, wz) + f(0.4, w3)]

0.2
2.1272056 + E[Bf{l.ﬂ, 2.6409314) + 19(0.8, 2.1272892)

— 5£(0.6, 1.6489220) + £(0.4, 1.2140762))

= 2.1272056 + 0.0083333[9(2.6409314) + 19(2.4872056)
— 5(2.2889220) + (2.0540762))

= 2.6408286.
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54 Predictor-Corrector Methods 197

In Example 1 we found that using the explicit Adams-Bashforth method alone produced
results that were inferior to those of Runge-Kutta. However, these approximations to y(0.8)
and y(1.0) are accurate to within

2.1272295 — 2.1272056| = 2.39 x 10~ and
|2.6408286 — 2.6408591| = 3.05 x 1075,

respectively, compared to those of Runge-Kutta, which were accurate, respectively, to
within

[2.1272027 — 2.1272892| = 2.69 x 10~° and
[2.6408227 — 2.6408591| = 3.64 x 107>, ]

Other multistep methods can be derived using integration of interpolating polynomials
over intervals of the form [t;, #;,;] for j < i — 1, where some of the data points are omitted.
Milne's method is an explicit technique that results when a Newton Backward-Difference
interpolating polynomial is integrated over [f;_3, fi+1].

Milne's Method
4h
Witl = Wi-3+ ?E?-f(fh wi) — fltic, wic) + 2 (fi-2, wi-2)],

where i =3,4,..., N — 1, with local error }2h”y®(u;) for some g; in (t_3, ti1).

This method is used as a predictor for an implicit method called Simpson’s method.
Its name comes from the fact that it can be derived using Simpson’s rule for approximating
integrals.

Simpson’s Method
h
Wip] = Wi + Ezf(‘Hl‘ wit1) +4f 0 w) + f@i, wis)l,

wherei =1,2,..., N — 1, with local error — g5h°y(¥ (;) for some y; in (£ _1, fi11)-

Although the local error involved with a predictor-corrector method of the Milne-
Simpson type is generally smaller than that of the Adams-Bashforth-Moulton method, the
technique has limited use because of round-off error problems, which do not occur with the
Adams procedure.

MATLAB uses methods that are more sophisticated than the standard Adams-
Bashforth-Moulton techniques to approximate the solutions to ordinary differential equa-
tions. An introduction to methods of this type is considered in Section 5.6,
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198 CHAPTER 5 = Numerical Solution of Initial-Value Problems

EXERCISE SET 54

1.  Use all the Adams-Bashforth methods to approximate the solutions to the following initial-value
problems. In each case, use exact starting values and compare the results to the actual values.

a. Yy =te¥ =2y for0 <t < 1, with y(0) = Oand & = 0.2; actual solution y(1) = {re* —
Levy Lo,

b. ¥y =14+(—y) for2 <t <3, with y(2) = l and h = 0.2; actual solution y(t) = t+1/(1—1¢).

. y=1+ }f. for1 <t <2, with y(1) =2 and & = 0.2; actual solution y(t) = tInt + 2¢.

d. y = cos2r +sin3¢, for 0 < r < 1 with y(0) = 1 and & = 0.2; actual solution y(r) =
Lsin2t — fcos3t + 1.

2 Use all the Adams-Moulton methods to approximate the solutions to Exercises 1(a), 1(c), and 1(d).
In each case, use exact starting values and explicitly solve for w;. ;. Compare the results to the actual
values.

3 Use each of the Adams-Bashforth methods to approximate the solutions to the following initial-value

problems. In each case, use starting values obtained from the Runge-Kutta method of order 4. Compare
the results to the actual values.

a y= % | G)',forl <1 <2,with y(1) = 1 and h = 0.1; actual solution y(t) = t/(I+1nr).
b y= 1+:3+G)'.rm1 <1 <3,withy(1) = Oand h = 0.2; actual solution y(r) = ¢ tan(lnr).
& ¥y =—-(+Dy+3,for0 <t < 2, withy(0) = —2and # = 0.1; actual solution

y() ==34+2/(1 4+ ).
d y = =5y+524+2,for0 =<1t =1, with y) = 1/3 and & = 0.1; actual solution
YOy =+ te ™,
4.  Use the predictor-corrector method based on the Adams-Bashforth Four-Step method and the

Adams-Moulton Three-Step method to approximate the solutions to the initial-value problems in
Exercise 1.

5 Use the predictor-corrector method based on the Adams-Bashforth Four-Step method and the Adams-
Moulton Three-Step method to approximate the solutions to the initial-value problem in Exercise 3.

6.  The initial-value problem
y=¢e', for0=t=020, withy{0) =1
has the exact solution
y(t) =1—In(l —et).

Applying the Adams-Moulton Three-Step method to the problem requires solving for w;y, in the
equation

h
glwi) =wy — (Wj + E (Ge™i+l 4 19" — 5™t 4+ e“'f’*)) =0.

Suppose that h = 0.01 and we use the exact starting values for wp, w, and w.
a. Appe-‘ly Newton's method to this equation with the starting value w; to approximate w3 to within
104,
b.  Repeat the calculations in (a) using the starting value w; to determine approximations accurate
to within 10~ for each w;, fori =2,..., 19.
7. Use the Milne-Simpson Predictor-Corrector method to approximate the solutions to the initial-value
problems in Exercise 3.

B 55 Extrapolation Methods

Extrapolation was used in Romberg integration for the approximation of definite integrals,
where we found that, by correctly averaging relatively inaccurate trapezoidal approxima-
tions, we could produce new approximations that are exceedingly accurate. In this section
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