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f. Use the answers generated in (e) and piecewise cubic Hermite interpolation to approximate y at

the following values and compare them to the actual values of y.
i. y(1.04) ii. >(1.55) iii. >(1.97)

9. Given the initial-value problem

y' = }i -* - y2
'

i < » < 2. :y(U = -i

with the exact solution >(/) = -1/ f.
a. Use Euler’s method with h = 0.05 to approximate the solution and compare it with the actual

values of >.
b. Use the answers generated in (a) and linear interpolation to approximate the following values of

> and compare them to the actual values.

i. >(1.052) ii. >(1.555) iii. >(1.978)

c. Use Taylor’s method of order 2 with h = 0.05 to approximate the solution and compare it with

the actual values of >.
d. Use the answers generated in (c) and linear interpolation to approximate the following values of

> and compare them to the actual values.

i. >(1.052) ii. >(1.555) iii. >(1.978)

e. Use Taylor’s method of order 4 with h = 0.05 to approximate the solution and compare it with

the actual values of >.
f. Use the answers generated in (e) and piecewise cubic Hermite interpolation to approximate the

following values of > and compare them to the actual values.

i. >(1.052) ii. >(1.555) iii. >(1.978)

10. In an electrical circuit with impressed voltage £, having resistance R, inductance L, and capacitance

C in parallel, the current i satisfies the differential equation

di d 2£ 1 d£ 1

dt
~ C ~

d^
+

R
~

dt
+

L
£'

Suppose i (0) = 0, C = 0.3 farads, R = 1.4 ohms, L = 1 . 7 henries, and the voltage is given by

£(t ) = eoab" sin (2f - jr).

Use Euler’s method to find the current i for the values t = 0.1 j, j = 0, 1, ... , 100.

11. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity u(0) = 8 m/s is slowed

due to the force of gravity FK = mg and due to air resistance Fr = — w h e r e g = —9.8 m/s2

and k = 0.002 kg/m. The differential equation for the velocity t; is given by

mu' = mg - & v|v|.

a. Find the velocity after 0.1, 0.2, ... , 1.0 s.

b. To the nearest tenth of a second, determine when the projectile reaches its maximum height and

begins falling.

5.3 Runge-Kutta Methods

In the last section we saw how Taylor methods of arbitrary high order can be generated.
However, the application of these high-order methods to a specific problem is complicated
by the need to determine and evaluate high-order derivatives with respect to t on the right

side of the differential equation. The widespread use of computer algebra systems has

simplified this process, but it still remains cumbersome.
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184 C H A P T E R 5 Numerical Solution of Initial-Value Problems

In the later 1800s, Carl Runge

(1856-1927) used methods

similar to those in this section to

derive numerous formulas for

approximating the solution to

initial-value problems.

In this section we consider Runge-Kutta methods, which modify the Taylor methods so
that the high-order error bounds are preserved, but the need to determine and evaluate the

high-order partial derivatives is eliminated. The strategy behind these techniques involves

approximating a Taylor method with a method that is easier to evaluate. This approximation
might increase the error, but the increase does not exceed the order of the truncation error
that is already present in the Taylor method. As a consequence, the new error does not

significantly influence the calculations.

In 1901, Marlin Wilhelm Kutta
(1867-1944) generalized the

methods that Runge developed in

1895 to incorporate systems of

first-order differential equations.
These techniques differ slightly

from those we currently call

Runge-Kutta methods.

Runge-Kutta Methods of Order Two

The Runge-Kutta techniques make use of the Taylor expansion of /, the function on the

right side of the differential equation. Since / is a function of two variables, t and y, we
must first consider the generalization of Taylor’s Theorem to functions of this type. This
generalization appears more complicated than the single-variable form, but this is only

because of all the partial derivatives of the function /.

Taylor's Theorem for Two Variables

If / and all its partial derivatives of order less than or equal to n + 1 are continuous on
D = {(f , y)|a < t < b, c < y < d ] and (t, y ) and (f + or, y + p ) both belong to D,

then

/(/ + <*, y + 0) » /(f , y) +

a2 d 2 f

2 d t2

r 3/ a/

+
32 f B2 32 f

( t J y ) + a PW7 j r (t , y ) + ~

^ j (t , y )
31 3y 2 3y

+

The error term in this approximation is similar to that given in Taylor’s Theorem, with

the added complications that arise because of the incorporation of all the partial derivatives

of order n + 1.
To illustrate the use of this formula in developing the Runge-Kutta methods, let us

consider a Runge-Kutta method of order 2. We saw in the previous section that the Taylor

method of order 2 comes from

yft+i) = y(t.) + hy'(u ) + y/'(»,) + y/"(£)

= y{ti ) + hf (t„ym + y/'te , >(»,)) + y/'tt),

or, since

/'(»,.yft)) = y(l,)) '

and y' f a ) = /fe, y(t, ) ),we have

yOi+i ) = y( tj ) + h /(».. yM ) +~ (t„yM ) +\ yft )) • f d i , y(t,) )

h3

+
3!

y'"(?)-
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5.3 Runge-Kutta Methods 185

Taylor’s Theorem of two variables permits us to replace the term in the braces with a
multiple of a function evaluation of / of the form a\/(f, + a , y (fr ) + P ). If we expand this

term using Taylor’s Theorem with n = 1, we have

a x f { t i + ar, y (/, ) + /3) % a, f ( ti > yW )+ yfc ) ) + yfc ) )

df df
= y(ti)) + axa -

^
( tn y( ti)) + y(tf )).

Equating this expression with the terms enclosed in the braces in the preceding equation
implies that ai, or, and p should be chosen so that

1 = au - = a\a, and -/(r,, y ( t, ) ) = a\ P\

that is,

a\ = 1, a = ^, ^ 0 = x /ft.?(0)-
The error introduced by replacing the term in the Taylor method with its approximation

has the same order as the error term for the method, so the Runge-Kutta method produced

in this way, called the Midpoint method, is also a second-order method. As a consequence,

the local error of the method is proportional to A3, and the global error is proportional {oh2.

Midpoint Method

w0 = Of

W,+1 = W, + h|/ ~ , W / + ,

where i = 0, 1, ... , N — 1, with local error 0(hy ) and global error 0 (h2 ).

Using a\ f ( t +a , y+ p ) to replace the term in the Taylor method is the easiest choice,
but it is not the only one. If we instead use a term of the form

a\ fit , y ) + a2 f (t + a , y + Pf (t , y)),

the extra parameter in this formula provides an infinite numberof second-order Runge-Kutta

formulas. When a\ = a2 =\ and a = p = /z, we have the Modified Euler method.

Modified Euler Method

w0 = a

Wi+, = w, -I- -[/(/, , w,) + /(/,+1, w, -I- hfOi ,W,))]

where i = 0, 1, ... , N — 1, with local error 0(h3 ) and global error 0 (h2 ).

Example 1 Use the Midpoint method and the Modified Euler method with N = 10, h = 0.2, t, = 0.2*,
and wo = 0.5 to approximate the solution to our usual example,

y' = y - t2 + 1, 0 < f < 2, y(0) = 0.5.
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186 C H A P T E R 5 Numerical Solution of Initial-Value Problems

Table 5.6

Karl Heun (1859-1929) was a
professor at the Technical

University of Karlsruhe. He

introduced this technique in a

paper published in 1900 [Hcu].

Heun's Method

Solution The difference equations produced from the various formulas are

Midpoint method: w,+ i = 1.22w; — 0.0088/ 2 — 0.008/ + 0.218;

Modified Euler method: wi+\ — 1.22w, - 0.0088/
2 — 0.008/ + 0.216,

for each / = 0, 1 , . . . , 9. The first two steps of these methods give

Midpoint method: w , = 1.22(0.5) - 0.0088(0)2 - 0.008(0) + 0.218 = 0.828;

Modified Euler method: wx = 1.22(0.5) - 0.0088(0)2 - 0.008(0) + 0.216 = 0.826,

and

Midpoint method: w2 = 1.22(0.828) - 0.0088(0.2)2 - 0.008(0.2) + 0.218

= 1.21136;

Modified Euler method: w2 = 1.22(0.826) - 0.0088(0.2)2 - 0.008(0.2) + 0.216

= 1.20692,

Table 5.6 lists all the results of the calculations. For this problem, the Midpoint method
is superior to the Modified Euler method.

t, y iO

Midpoint

Method Error

Modified Euler

Method Error

0.0 0.5000000 0.5000000 0 0.5000000 0
0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986
0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982
0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938

1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715

1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627
1.4 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138

1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866
1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577
2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173

Higher-Order Runge-Kutta Methods

The term T (3)(/ , y) can be approximated with global error 0{h? ) by an expression of the
form

f i t + , y -I- <$ i f { t + a2 , y + 8 2 f i t , y))),

involving four parameters, but the algebra involved in the determination of orj , $1 , ar2, and
<$2 is quite involved. The most common 0 (h* ) is Heun’s method.

w0 = a

W / +1 = l (/(*i » W i ) + 3 (/ (t, + y , W, + y / (r, +|, w, + 1/ (*, , H',)) ))) ,

for 1 = 0, 1 , . . . , N — 1, with local error 0 (h4 ) and global error 0 (h }
).
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5.3 Runge-Kutta Methods 187

Illustration Applying Heun’s method with N = 10, h = 0.2, f, = 0.2i , and wo = 0.5 to approximate
the solution to our usual example,

y' = y - t2+1, 0 < t < 2, y(0 ) = 0.5

gives the values inTable5.7. Note the decreased error throughout the range over the Midpoint
and Modified Euler approximations.

Table 5.7

ti y( ti )

Heun’s

Method Error

0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292444 0.0000542
0.4 1.2140877 1.2139750 0.0001127
0.6 1.6489406 1.6487659 0.0001747

0.8 2.1272295 2.1269905 0.0002390

1.0 2.6408591 2.6405555 0.0003035

1.2 3.1799415 3.1795763 0.0003653
1.4 3.7324000 3.7319803 0.0004197
1.6 4.2834838 4.2830230 0.0004608
1.8 4.8151763 4.8146966 0.0004797

2.0 5.3054720 5.3050072 0.0004648

The program RK04M52

implements the

Rungc-Kulta Order 4

method.

Runge-Kutta Order Four

Runge-Kutta methods of order 3 are not generally used. The most common Runge-Kutta
method in use is of order 4. It is given by the following.

Runge-Kutta Method of Order 4

w0 = a ,

*i = h f ( t i ,W j ) ,

k2 = hffti + Wi +

*3 = A/(f, + £, W, + K),

*4 = + k3).

w /+1 = wi + + 2k2 + 2k$ + £4),

where 1 = 0, 1 , . . . , N — 1, with local error 0(/z 5 ) and global error 0 (/i4 ) .

Example 2 Use the Runge-Kutta method of order 4 with h = 0.2, N = 10, and t, = 0.2i to obtain
approximations to the solution of the initial-value problem

y' = y - t2 + 1 , 0 < r < 2, y(0) = 0.5 .
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188 C H A P T E R 5 Numerical Solution of Initial-Value Problems

Solution The approximation to >(0.2) is obtained by

wo = 0.5

*i = 0.2/ (0, 0.5) = 0.2(1.5) = 0.3

*2 = 0.2/ (0.1, 0.65) = 0.328

*3 = 0.2/ (0.1, 0.664) = 0.3308

*4 = 0.2/ (0.2, 0.8308) = 0.35816

w , = 0.5 + 4(0.3 + 2(0.328) + 2(0.3308) + 0.35816) = 0.8292933.
6

The remaining results and their errors are listed in Table 5.8.

Table 5.8

ti
Exact

y< = y(t/ )

Runge-Kutta
Order 4

w,
Error

1>t ~ w/ l

0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364

1.2 3.1799415 3.1798942 0.0000474
1.4 3.7324000 3.7323401 0.0000599

1.6 4.2834838 4.2834095 0.0000743
1.8 4.8151763 4.8150857 0.0000906
2.0 5.3054720 5.3053630 0.0001089

Computational Comparisons

The main computational effort in applying the Runge-Kutta methods involves the function
evaluations of /. In the second-order methods, the local error is 0( h3) and the cost is

two functional evaluations per step. The Runge-Kutta method of order 4 requires four
evaluations per step and the local error is 0 (h5). The relationship between the number of

evaluations per step and the order of the global error is shown in Table 5.9. Because of the

relative decrease in the order for n greater than 4, the methods of order less than 5 with

smaller step size are used in preference to the higher-order methods using a larger step size.

Table 5.9 Evaluations per step: 2 3 4 5 < n < 7 8 < n < 9 10 < n

Best possible global error: o(/i2) O(A’) o(h* ) 0{hH ~ x ) 0( hH ~2 ) 0 {hn ~3)

One way to compare the lower-order Runge-Kutta methods is described as follows:
The Runge-Kutta method of order 4 requires four evaluations per step, so to be superior to

Euler’s method, which requires only one evaluation per step, it should give more accurate

answers than when Euler’s method uses one-fourth the Runge-Kutta step size. Similarly,

if the Runge-Kutta method of order 4 is to be superior to the second-order Runge-Kutta
methods, which require two evaluations per step, it should give more accuracy with step

size h than a second-order method with step size \h.The following Illustration indicates

the superiority of the Runge-Kutta method of order 4 by this measure.
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5.3 Runge-Kutta Methods 189

111ustration For the problem

y' = y- t2 + l , 0 < t < 2, y(0 ) = 0.5,

Euler’s method with h = 0.025, the Midpoint method with h = 0.05, and the Runge-
Kutta fourth-order method with h = 0.1 arc compared at the common mesh points of

these methods 0.1, 0.2, 0.3, 0.4, and 0.5. Each of these techniques requires 20 function
evaluations to determine the values listed in Table 5.10 to approximate ,y(0.5). In this

example, the fourth-order method is clearly superior.

Table 5.10

t i Exact
Euler

h = 0.025

Modified
Euler

h = 0.05

Runge-Kutta
Order 4

h = 0.1

0.0 0.5000000 0.5000000 0.5000000 0.5000000

0.1 0.6574145 0.6554982 0.6573085 0.6574144

0.2 0.8292986 0.8253385 0.8290778 0.8292983
0.3 1.0150706 1.0089334 1.0147254 1.0150701
0.4 1.2140877 1.2056345 1.2136079 1.2140869

0.5 1.4256394 1.4147264 1.4250141 1.4256384

MATLAB uses methods to approximate the solutions to ordinary differential equations

that are more sophisticated than the standard Runge-Kutta techniques. An introduction to

methods of this type is considered in Section 5.6.

E X E R C I S E S E T 5 . 3

1. Use the Modified Euler method to approximate the solutions to each of the following initial-value

problems, and compare the results to the actual values.

a. y' — te*' -2y, 0 < t < 1, y(0) = 0, with /i = 0.5; actual solution y(f ) = Ife3/ — ~e3’ +
T

*
"2'25

C *

b. y' = 1 + (f — y )2, 2 < / < 3, y(2) = 1, with h = 0.5; actual solution y( t) = / 4-
c. y' = 1 + y/ f , 1 < t < 2, y(l) = 2, with h = 0.25; actual solution y(r) = tint + 2t .
d. y' = cos 2f + sin 3/, 0 < t < 1, y(0) = 1, with h = 0.25; actual solution y(f ) =

1 sin 2/ - I cos 3/ +
2. Use the Modified Euler method to approximate the solutions to each of the following initial-value

problems, and compare the results to the actual values.

a. y' = y / t — (y/ f )
2, 1 < t < 2, y( l ) = 1, with h = 0.1; actual solution y(f ) = / /(1 + In /).

b. y' — l +y/ f +(y/02, 1 < f < 3, y( l ) = 0, with h = 0.2; actual solution y(/) = ftan(lnf ).

c. y' = —(y 4* l)(y + 3), 0 < / < 2, y(0) = —2, with h = 0.2; actual solution y(f ) =—3 + 2(1 4- e~2/)"1.
d. y' = —5y 4-5/

2 +2f, 0 < t < 1, y(0) = with /? = 0.1; actual solution y ( t ) = t 2+\e~il.
3. Use the Modified Euler method to approximate the solutions to each of the following initial-value

problems, and compare the results to the actual values.
2 2^

, 2^ ^|a. y' =
^ ^

, 0 < / < 1, y(0) = 1, with h = 0.1; actual solution y(/) =
^ ^

.

V
2 -1

b. y' = , 1 < t < 2, y( l ) = with h = 0.1; actual solution y(f ) = — —.
1 4- / ln ~ ln(r + 1)
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190 C H A P T E R 5 Numerical Solution of Initial-Value Problems

4.
5.
6.

7.
8.

9.
10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

c. y' = (y2 + y)/f, 1 < t < 3, y( l ) = — 2, with h = 0.2; actual solution y( / ) = -—-.

d. y' = —t y+4t / y , 0 < / < 1, y(0) = 1, with /i = 0.1; actual solution y( t ) = \A — 3e
_,
\

Repeat Exercise 1 using the Midpoint method .

Repeat Exercise 2 using the Midpoint method .

Repeat Exercise 3 using the Midpoint method.
Repeat Exercise 1 using Heun’s method.

Repeat Exercise 2 using Heun’s method.

Repeat Exercise 3 using Heun’s method.

Repeat Exercise 1 using the Runge-Kutta method of order 4.
Repeat Exercise 2 using the Runge-Kutta method of order 4.

Repeat Exercise 3 using the Runge-Kutta method of order 4.
Use the results of Exercise 2 and linear interpolation to approximate values of y(f ), and compare the

results to the actual values.
a. y(1.25) and y(1.93) b. y(2.1) and y(2.75)

c. y(1.3) and y(1.93) d. >(0.54) and >(0.94)

Use the results of Exercise 3 and linear interpolation to approximate values of y (f ), and compare the

results to the actual values.
a. >(0.54) and >(0.94) b. >(1.25) and >(1.93)

c. >(1.3) and >(2.93) d. >(0.54) and >(0.94)

Use the results of Exercise 11 and Cubic Hermite interpolation to approximate values of >(/), and

compare the approximations to the actual values,

a. >(1.25) and >(1.93) b. >(2.1) and >(2.75)

c. >(1.3) and >(1.93) d. >(0.54) and >(0.94)

Use the results of Exercise 12 and Cubic Hermite interpolation to approximate values of >(f ), and

compare the approximations to the actual values,

a. >(0.54) and >(0.94) b. >(1.25) and >(1.93)

c. >(1.3) and >(2.93) d. >(0.54) and >(0.94)

Show that the Midpoint method and the Modified Euler method give the same approximations to the
initial-value problem

>' = -> + r + l , 0 < f < 1 , >(0) = 1,

for any choice of h . Why is this true?

Water flows from an inverted conical tank with a circular orifice at the rate

ft =

where r is the radius of the orifice, x is the height of the liquid level from the vertex of the cone,

and A(x) is the area of the cross-section of the tank x units above the orifice. Suppose r = 0.1 ft,
g = 32.1 ft/s2, and the tank has an initial water level of 8 ft and initial volume of 512(7r/3) ft3. Use
the Runge-Kutta method of order 4 to find the following.

a. The water level after 10 min with h = 20 s

b. When the tank will be empty, to within 1 min.

The irreversible chemical reaction in which two molecules of solid potassium dichromate (KzC^O?),
two molecules of water (H20), and three atoms of solid sulfur (S) combine to yield three molecules of
the gas sulfur dioxide (S02), four molecules of solid potassium hydroxide (KOH), and two molecules

of solid chromic oxide (Cr203) can be represented symbolically by the stoichiometric equation:

2K2Cr207 + 2H20 + 3S —> 4KOH + 2Cr2Oj + 3SO..
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5.4 Predictor-Corrector Methods 191

If n! molecules of K2Cr207, n2 molecules of H20, and n3 molecules of S are originally available, the

following differential equation describes the amount x(r ) of KOH after time t:

dx

dt

where k is the velocity constant of the reaction. If k = 6.22 x 10-19, nj = n2 = 2 x 103, and

= 3 x 103, use the Runge-Kutta method of order 4 to determine how many units of potassium

hydroxide will have been formed after 0.2 s.

20. Show that Heun’s Method can be expressed in difference form, similar to that of the Runge-Kutta

method of order 4, as

w0 = or.

*2 = hf ^t, + w , + -*|J ,

*3 = h f + y, w, + ,

w.+ i = W, +\( k { + 3*3),

for each i = 0, 1, ... , N - 1.

5.4 Predictor-Corrector Methods

TheTaylor and Runge-Kutta methods are examples of one-step methods for approximating
the solution to initial-value problems. These methods use w, in the approximation w,+ i

to but do not involve any of the prior approximations WQ , w w,*_|.Generally

some functional evaluations of / are required at intermediate points, but these are discarded

as soon as w,+ i is obtained.
Since \ y(tj )-Wj|decreases in accuracy as j increases, better approximation methods

can be derived if, when approximating y(4+ j), we include in the method some of the
approximations prior to w,. Methods developed using this philosophy are called multistep

methods. In brief, one-step methods consider what occurred at only one previous step;

multistep methods consider what happened at more than one previous step.
To derive a multistep method, suppose that the solution to the initial-value problem

dy— = fit , y ) , for a < t < b, with y {a ) = a,
at

is integrated over the interval [4 , 4+1]. Then

/•*/+1 ru+1

y(4+i)- y( ti ) = / y\t )dt = / fit , y(t ) )dt ,
J t j J t i

and

ru+1

y(4+i) = yM + / fit , yit ) )dt.
Ju

Since we cannot integrate / (/, yit ) ) without knowing yit ), which is the solution to the

problem, we instead integrate an interpolating polynomial, Pit ), for fit , yit ) ) determined
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