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f.  Use the answers generated in (e) and piecewise cubic Hermite interpolation to approximate y at
the following values and compare them to the actual values of y.
i y(1.04) il.  ¥(1.55) iii.  y(1.97)
9. Given the initial-value problem

Yy 1=t<2, y)=-1

i

il
with the exact solution y(f) = —1/t.
a.  Use Euler's method with h = 0.05 to approximate the solution and compare it with the actual
values of y.
b.  Use the answers generated in (a) and linear interpolation to approximate the following values of
y and compare them to the actual values.
i y(1.052) il.  ¥(1.555) iii. y(1.978)
¢ Use Taylor's method of order 2 with & = .05 to approximate the solution and compare it with
the actual values of y.
d.  Use the answers generated in (c) and linear interpolation to approximate the following values of
y and compare them to the actual values.
L »(1.052) . ¥(1.555) ifii.  y(1.978)
e.  Use Taylor’s method of order 4 with & = 0.05 to approximate the solution and compare it with
the actual values of y.
f.  Use the answers generated in (e) and piecewise cubic Hermite interpolation to approximate the
following values of ¥ and compare them to the actual values.
i y(1.052) . y(1.555) iii.  y(1.978)
10.  In an electrical circuit with impressed voltage £, having resistance R, inductance L, and capacitance
C in parallel, the current i satisfies the differential equation

di e 1dE 1
a =t ra 1%
Suppose i(0) =0, C = 0.3 farads, R = 1.4 ohms, L = 1.7 henries, and the voltage is given by

E(@) =e "% gin(2r — m).

Use Euler’s method to find the current { for the valuest = 0.15, j =0, 1,..., 100.

11. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity v(0) = 8 m/s is slowed
due to the force of gravity F, = mg and due to air resistance F, = —kv|v|, where g = —9.8 m/s*
and k = 0.002 kg/m. The differential equation for the velocity v is given by

mv' = mg — kv|v|.

a. Find the velocity after 0.1,0.2,...,1.0s.

b.  To the nearest tenth of a second, determine when the projectile reaches its maximum height and
begins falling.

- 5.3 Runge-Kutta Methods

In the last section we saw how Taylor methods of arbitrary high order can be generated.
However, the application of these high-order methods to a specific problem is complicated
by the need to determine and evaluate high-order derivatives with respect to ¢ on the right
side of the differential equation. The widespread use of computer algebra systems has
simplified this process, but it still remains cumbersome.
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184 CHAPTER 5 = Numerical Solution of Initial-Value Problems

In the later 1800s, Carl Runge In this section we consider Runge-Kutta methods, which modify the Taylor methods so
(1856-1927) used methods that the high-order error bounds are preserved, but the need to determine and evaluate the
similar to those in this section o hjgh-order partial derivatives is eliminated. The strategy behind these techniques involves
derive numerous formulas for approximating a Taylor method with a method that is easier to evaluate. This approximation

approximating the solution to

ot might increase the error, but the increase does not exceed the order of the truncation error
initial-value problems.

that is already present in the Taylor method. As a consequence, the new error does not
significantly influence the calculations.

In 1901, Martin Wilhelm Kuta Runge-Kutta Methods of Order Two
(1B67-1944) generalized the

methods that Runge developedin - The Runge-Kutta techniques make use of the Taylor expansion of f, the function on the
1895 toincorporate systems of  righy side of the differential equation. Since f is a function of two variables, f and y, we
first-order differential equations. et firgt consider the generalization of Taylor’s Theorem to functions of this type. This
A A Ak generalization appears more complicated than the single-variable form, but this is only
from those we currently call 3 Sy o .

because of all the partial derivatives of the function f.

Runge-Kutta methods.
Taylor's Theorem for Two Variables

If f and all its partial derivatives of order less than or equal to n + 1 are continuous on
D={(t,yla<t=<bh c<y<d}and(f,y) and (f + &,y + B) both belong to D,
then

f@+a,y+p)= ft,y) + [ag(r, y) +ﬁa—‘£(r.y}]
2 ‘If f ﬂ! If
+[2 3:20 yJ"'“ﬁa:a e+ 3y ==l y)}

1« o " f
+;:_IZ( ) Jﬁ}&z*‘"a‘a gD
J=0

The error term in this approximation is similar to that given in Taylor's Theorem, with
the added complications that arise because of the incorporation of all the partial derivatives
of ordern + 1.

To illustrate the use of this formula in developing the Runge-Kutta methods, let us
consider a Runge-Kutta method of order 2. We saw in the previous section that the Taylor
method of order 2 comes from

h? n
yi) = y@) +hy' () + ?}'”(f:) + i)’m@)
h? n
= y(t:) + hf (i, y(t) + Efj(fn () + ﬁ)”"(f)'
or, since
1t ey = gz OF i S tiny« vt
flltyn)) = 7 (@, y(6)) + 3y (t, y(t)) - ¥' ()

and y'(t;) = f(1;, y(t;)), we have

Y(0ia1) = y(6) + [f(r.-, ) + g%(r;. ) + ;—’%(n, ) - £, y(r,-))}
h] ‘H
+37"©).
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Taylor’s Theorem of two variables permits us to replace the term in the braces with a
multiple of a function evaluation of f of the form a; f(#; +a, y(;) + B). If we expand this
term using Taylor’s Theorem with n = 1, we have

a fti +a,yt) + B) = a | f, y(t) +ﬂ%(fi=}'(ff)) =} ﬁ%(‘i, y(:))

a a
= ay f(t;, yt)) + alrxa—‘:(ﬂ. (&) +01,3%(ff'y(f.‘))-

Equating this expression with the terms enclosed in the braces in the preceding equation
implies that a|, o, and 8 should be chosen so that

h h
l=a, 3 =@ and 5f(r.-,)’(te)}=615;
that is,

a=1, a=

h
> and ﬁ=5f(fi;3’(fr'))-

The error introduced by replacing the term in the Taylor method with its approximation
has the same order as the error term for the method, so the Runge-Kutta method produced
in this way, called the Midpoint method, is also a second-order method. As a consequence,
the local error of the method is proportional to &%, and the global error is proportional to A2,

Wo=0o

Winn=w;+h [f (fi =+ g-wf + %f{fh Wf))] )

wherei =0, 1,..., N — 1, with local error @ (#*) and global error O (h?).

Modified Euler Method

Using a, f (t +a, y + B) to replace the term in the Taylor method is the easiest choice,
but it is not the only one. If we instead use a term of the form

ay f(t,y) +arf(t +a,y+Bf 2 ),

the extra parameter in this formula provides an infinite number of second-order Runge-Kutta
formulas. When a; = ax = ; and @ = B = h, we have the Modified Euler method.

wWp=0a
Wit = Wi+ gff(fi- wi) + (G, wi + Bf (1, wi)]

wherei =0, 1,..., N — 1, with local error O (k?) and global error O (h2).

Example 1

Use the Midpoint method and the Modified Euler method with N = 10, h = 0.2, t; = 0.2,
and wyp = 0.5 to approximate the solution to our usual example,

y=y—-1*+1, 0<1r<2, y0)=05.
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186 CHAPTER 5 = Numerical Solution of Initial-Value Problems

Solution The difference equations produced from the various formulas are
Midpoint method:  w; 4, = 1.22w; — 0.0088i% — 0.008i + 0.218;
Modified Euler method:  w;; = 1.22w; — 0.0088i% — 0.008i + 0.216,
foreachi =0, 1,...,9. The first two steps of these methods give
Midpoint method:  w; = 1.22(0.5) — 0.0088(0)* — 0.008(0) + 0.218 = 0.828;
Modified Euler method: w; = 1.22(0.5) — 0.0088(0)* — 0.008(0) + 0.216 = 0.826,

and
Midpoint method: w, = 1.22(0.828) — 0.0088(0.2)%> — 0.008(0.2) -+ 0.218
= 1.21136;
Modified Euler method:  w, = 1.22(0.826) — 0.0088(0.2)*> — 0.008(0.2) + 0.216
= 1.20692,

Table 5.6 lists all the results of the calculations. For this problem, the Midpoint method
is superior to the Modified Euler method.

Table 5.6 Midpoint Modified Euler

1 yit;) Method Error Method Error
0.0 0.5000000 0.5000000 0 0.5000000 0

0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986
0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982
0.8 2.1272295 21212842 0.0059453 2.1102357 0.0169938
1.0 2.6408591 26331668 0.0076923 2.6176876 00231715
12 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627
14 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138
1.6 42834838 42706218 0.0128620 42350972 0.0483866
1.8 4.8151763 4.8009586 0.0142177 47556185 0.0595577
2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173

Higher-Order Runge-Kutta Methods

The term T (¢, y) can be approximated with global error Q(h*) by an expression of the

Karl Heun (1859-1929) was a form

professor at the Technical

University of Karlsruhe, He f+ar,y+8:f@+ay+8&fEy)),

introduced this technique in a

saper published -mh;;go l;[cu]_ involving four parameters, but the algebra involved in the determination of «,, §;, a3, and
&5 is quite involved. The most common O (k?) is Heun's method.

Heun’s Method
Wy =a
wigr =wi+ 5 (fGw)+3(f L+ wi+ 376+ 5w+ 50 wd)))),
fori =0,1,...,N — 1, with local error @(h*) and global error O (h?).
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53 Runge-Kutta Methods 187

lllustration  Applying Heun's method with N = 10, h = 0.2, ; = 0.2, and wg = 0.5 to approximate
the solution to our usual example,

Yy=y—-+1, 0<t<2, y0=05

givesthe values in Table 5.7. Note the decreased error throughout the range over the Midpoint

and Modified Euler approximations. O
Table 5.7 it
L ¥(t) Method Error

0.0 0.5000000 0.5000000 0

0.2 0.8292986 0.8292444 0.0000542
0.4 1.2140877 1.2139750 0.0001127
0.6 1.6489406 1.6487659 0.0001747
0.8 2.1272295 2.1269905 0.0002390
1.0 2.6408591 2.6405555 0.0003035
12 3.1799415 3.1795763 0.0003653
14 3.7324000 3.7319803 0.0004197
1.6 4.2834838 4.2830230 0.0004608
1.8 4.8151763 4.8146966 0.0004797
20 5.3054720 5.3050072 0.0004648

Runge-Kutta Order Four

Runge-Kutta methods of order 3 are not generally used. The most common Runge-Kutta
method in use is of order 4. It is given by the following.

Runge-Kutta Method of Order 4
Wo = @,
ky = hf (e, wi),

h 1
ky = ﬁf(fi + 7 Wi + Ekl).

h 1
ks =5f(lf +oowit ikz).
ko = hf (81, wi + ka),
1
Wit =W + E(k] + 2k + 2k3 + ka),

wherei =0, 1,..., N — 1, with local error O (h*) and global error O (*).

Example 2 Use the Runge-Kutta method of order 4 with h = 0.2, N = 10, and # = 0.2 to obtain
approximations to the solution of the initial-value problem

'=y—1+1, 0=<t<2 y0)=05.
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188 CHAPTER 5 = Numerical Solution of Initial-Value Problems

Solution The approximation to y(0.2) is obtained by
wo=0.5
k1 =0.2f(0,0.5) =0.2(1.5) =03
k2 =0.2f(0.1,0.65) = 0.328
ks =0.2f(0.1,0.664) = 0.3308
ks = 0.2f(0.2,0.8308) = 0.35816

1
wy =05+ 6(0.3 + 2(0.328) + 2(0.3308) + 0.35816) = 0.8292933.

The remaining results and their errors are listed in Table 5.8. ]

Table 5.8 Runge-Kutta
Exact Order 4 Error

1 ¥i=y) wi 1y —wil

0.0 05000000 0.5000000 0

0.2 0.8292986 0.8292933 0.0000053

0.4 1.2140877 1.2140762 0.0000114

0.6 1.6489406 1.6489220 0.0000186

0.8 2.1272295 2.1272027 0.0000269

1.0 2.6408591 2.6408227 0.0000364

1.2 3.1799415 3.1798942 0.0000474

14 3.7324000 3.7323401 0.0000599

1.6 4,2834838 4.,2834095 0.0000743

1.8 4.8151763 4.8150857 0.0000906

2.0 5.3054720 5.3053630 0.0001089

Computational Comparisons

The main computational effort in applying the Runge-Kutta methods involves the function

evaluations of f. In the second-order methods, the local error is O(k*) and the cost is

two functional evaluations per step. The Runge-Kutta method of order 4 requires four

evaluations per step and the local error is O(h%). The relationship between the number of

evaluations per step and the order of the global error is shown in Table 5.9. Because of the

relative decrease in the order for n greater than 4, the methods of order less than 5 with

smaller step size are used in preference to the higher-order methods using a larger step size.
Table 5.9

Evaluations per step: 2 3 4 S5<n<7 8<n<9 10<n

Best possible globalerror:  O(h%)  O(h')  O(kY) O(h" ") O(h" ) O(h"?)

One way to compare the lower-order Runge-Kutta methods is described as follows:
The Runge-Kutta method of order 4 requires four evaluations per step, so to be superior to
Euler’s method, which requires only one evaluation per step, it should give more accurate
answers than when Euler's method uses one-fourth the Runge-Kutta step size. Similarly,
if the Runge-Kutta method of order 4 is to be superior to the second-order Runge-Kutta
methods, which require two evaluations per step, it should give more accuracy with step
size h than a second-order method with step size %h. The following Illustration indicates
the superiority of the Runge-Kutta method of order 4 by this measure.
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53 Runge-Kutta Methods 189

lllustration  For the problem
YV=y-£+1, 0<t<2, y0) =05,

Euler's method with & = 0.025, the Midpoint method with & = 0.05, and the Runge-
Kutta fourth-order method with & = 0.1 are compared at the common mesh points of
these methods 0.1, 0.2, 0.3, 0.4, and 0.5. Each of these techniques requires 20 function
evaluations to determine the values listed in Table 5.10 to approximate y(0.5). In this
example, the fourth-order method is clearly superior. &)

Runge-Kutta

Euler Euler Order 4

4 Exact h =0.025 h =0.05 h=0.1
0.0 0.5000000 0.5000000 0.5000000 0.5000000
0.1 0.6574145 0.6554982 0.6573085 0.6574144
0.2 0.8292986 0.8253385 0.8290778 0.8292983
03 1.0150706 1.0089334 1.0147254 1.0150701
0.4 1.2140877 1.2056345 1.2136079 1.2140869
0.5 1.4256394 1.4147264 1.4250141 1.4256384

MATLAB uses methods to approximate the solutions to ordinary differential equations
that are more sophisticated than the standard Runge-Kutta technigues. An introduction to
methods of this type is considered in Section 5.6.

EXERCISE SET 53

1.  Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.
a. ):' =-.2.I“e“' -2y, 0=<t=<1, y(0)=0, withh = 0.5; actual solution y(t) = %tel’ - ;—5e3’ +

€

b. ;::= 1+(0—y?% 2=<r=<3, y2)=1, withh=0.5; actual solution y(r) =1+ ;5.
y=14y/t, 1<t=<2 y(1)=2, withh =0.25; actual solution y(z) = ¢ Int + 2¢.

y = cos2t +sin3t, 0 <1t <1, y0) =1, withh = 025, actual solution y(t) =

1sin2t — lcosdr+ 4,

2.  Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

[ <]

a. Yy =y/t—(/1) 1=<1<2, y()=1,withk=0.1; actual solution y(r) =t /(1 +1nt).
b. y’ = l+y{r+(y,-'t)3, 1=t=3 y(1)=0,withh = 0.2; actual solution y(t) = ¢ tan(ln ¢).
¢ yY=—(+Dy+3), 0=<1=2 y0 =-2, withh = 0.2; actual solution y(r) =
—3+2(1 4+ ¥yl
d. y'=-5y+5042, 0<r<l1, y(0) =3, withh =0.1; actal solution y(r) = r*+1e ™.
3.  Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

2
= 4y 0<r=1, y(0)=1,withh=0.1; actual solution 3.r(r)=2Ir+l

T o2+1’ P2+l
Y= ¥ l=t=<2, y(1)= =L with h = 0.1; actual solution y(t) = =3 i
14¢ = A 2 In(r + 1)
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190 CHAPTER 5 = Numerical Solution of Initial-Value Problems

14.

15.

16.

17.

18.

19.

2t
& ¥Y=0"+y/t, 1=t=<3, y(l)=-2, withh =0.2; actual solution y(t) = IT:'
d. Yy =-ty+4t/y, 0=<t<1, y(0)=1, withh = 0.1; actual solution y(t) = \/4— 3e .
Repeat Exercise 1 using the Midpoint method.
Repeat Exercise 2 using the Midpoint method.
Repeat Exercise 3 using the Midpoint method.
Repeat Exercise 1 using Heun’s method,
Repeat Exercise 2 using Heun's method.
Repeat Exercise 3 using Heun's method.
Repeat Exercise 1 using the Runge-Kutta method of order 4.
Repeat Exercise 2 using the Runge-Kutta method of order 4.
Repeat Exercise 3 using the Runge-Kutta method of order 4.
Use the results of Exercise 2 and linear interpolation to approximate values of y(t), and compare the
results to the actual values.
a. y(1.25) and y(1.93) b,  y(2.1) and y(2.75)
c.  y(1.3)yand y(1.93) d.  y(0.54) and y(0.94)
Use the results of Exercise 3 and linear interpolation to approximate values of y(r), and compare the
results to the actual values.
a.  y(0.54) and y(0.94) b, y(1.25) and y(1.93)
¢.  y(1.3)and y(2.93) d. y(0.54) and y(0.94)
Use the results of Exercise 11 and Cubic Hermite interpolation to approximate values of y(t), and
compare the approximations to the actual values.
a. y(1.25) and y(1.93) b, y(2.1) and y(2.75)
¢ y(1.3)and y(1.93) d.  y(0.54) and y(0.94)
Use the results of Exercise 12 and Cubic Hermite interpolation to approximate values of y(t), and
compare the approximations to the actual values.
a.  y(0.54) and y(0.94) b.  y(1.25) and y(1.93)
¢.  y(1.3)and y(2.93) d.  (0.54) and y(0.94)
Show that the Midpoint method and the Modified Euler method give the same approximations to the
initial-value problem

yY=—y+1+1, 0=tr=l, y0)=1,

for any choice of k. Why is this true?
‘Water flows from an inverted conical tank with a circular orifice at the rate

dx Jx

— = =0.6mr/ 22—,

di NE LD
where r is the radius of the orifice, x is the height of the liquid level from the vertex of the cone,
and A(x) is the area of the cross-section of the tank x units above the orifice. Suppose r = 0.1 ft,
g = 32.1 f/s?, and the tank has an initial water level of 8 ft and initial volume of 512(m/3) ft®, Use
the Runge-Kutta method of order 4 to find the following.
a. The water level after 10 min withh = 208
b. 'When the tank will be empty, to within 1 min.
The irreversible chemical reaction in which two molecules of solid potassium dichromate (K,Cr;05),
two molecules of water (H,0), and three atoms of solid sulfur (S) combine to yield three molecules of

the gas sulfur dioxide (SO,), four molecules of solid potassium hydroxide (KOH), and two molecules
of solid chromic oxide (Cr,0) can be represented symbolically by the stoichiometric equation:

2K;Cr;07 + 2H,0 + 35 — 4KOH + 2Cr:0; + 350;.
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54 Predictor-Corrector Methods 19

If n; molecules of K;Cr;0, n; molecules of H,O, and n; molecules of S are originally available, the
following differential equation describes the amount x(t) of KOH after time #:

dx _ o 25 (= %Y (= Y

dr AT I 2T )
where k is the velocity constant of the reaction. If k = 6.22 x 107", n; = n, = 2 x 10°, and
n; = 3 x 10°, use the Runge-Kutta method of order 4 to determine how many units of potassium
hydroxide will have been formed after 0.2 s.

20.  Show that Heun's Method can be expressed in difference form, similar to that of the Runge-Kutta
method of order 4, as

Wy =,
ki = hf(t,wi),
h 1
k= hf(f.‘ + E.W,' + Ekg).
2h 2
b= if (1 owi+ 2a),

1
Wil =W + a(kj + 3k3),

foreachi =0,1,... N —1.

‘ _ 5.4 Predictor-Corrector Methods

The Taylor and Runge-Kutta methods are examples of one-step methods for approximating
the solution to initial-value problems. These methods use w; in the approximation w;.;
to y(#;.,) but do not involve any of the prior approximations wg, wy, ..., w;_;. Generally
some functional evaluations of f are required at intermediate points, but these are discarded
as soon as w;. is obtained.

Since |y(t;) — w ;| decreases in accuracy as j increases, better approximation methods
can be derived if, when approximating y(f;+;), we include in the method some of the
approximations prior to w;. Methods developed using this philosophy are called multistep
methods. In brief, one-step methods consider what occurred at only one previous step;
multistep methods consider what happened at more than one previous step.

To derive a multistep method, suppose that the solution to the initial-value problem

Dt frasish, vity@=a,

is integrated over the interval [#;, #;5]. Then

T fis
Y(tiar) = y(@) = f 'Yyt = f ' Fay@ar,
and

i+

Y(tier) = y0) + Fie, y())dt.

U]

Since we cannot integrate f (¢, y(t)) without knowing y(r), which is the solution to the
problem, we instead integrate an interpolating polynomial, P(z), for f (¢, y(¢)) determined
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