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b. Repeat (a) with the Hermite interpolating polynomial of degree at most 5, using x; = 1,
x; = 1.05, and x; = 1.07.
5.  Use the error formula and MATLAB to find a bound for the errors in the approximations of f(x) in
(a) and (c) of Exercise 2.
6.  The following table lists data for the function described by f(x) = st Approximate f(1.25) by
using Hs(1.25) and H;(1.25), where Hs uses the nodes x, = 1, x) = 2, and x, = 3 and H; uses the
nodes ¥, = 1 and ¥, = L.5. Find error bounds for these approximations.

x| f@ = | fi) = 0.2

X =% =1 | 1105170918 | 02210341836
=15 1252322716 | 03756968148
xn =2 1491824698 | 0.5967298792
X=3 2459603111 | 1.475761867

7. Acartraveling along a straight road is clocked at a number of points. The data from the observations
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is
in feet per second.

Time o] 3| s| 8| 13
Distance | 0 | 225 | 383 | 623 | 993
Speed |75 | 77| 80| 74| 72

a. Use a Hermite polynomial to predict the position of the car and its speed when ¢t = 10 s,
b.  Use the derivative of the Hermite polynomial to determine whether the carever exceeds a 55-mi/h
speed limit on the road. If so, what is the first time the car exceeds this speed?
¢.  What is the predicted maximum speed for the car?
8. Let zy = xy, 2y = X, 22 = X3, and z; = x,. Form the following divided-difference table.

zo=xo [flzo] = flx0)
flzo. 21l = f'(x0)
zi=xy flal = flx) flzo. 21, 23]
flz, 23] flzo, 71, 22, 73]
n=x1 flz2]= flx) flzi z2, 23]
flza, 23]l = i)
z=x flza]=f@)

Show if
P(x) = flzol + flzo, 11)(x = xa) + fl2o, 21, 22](x = 20)* + flz0: 710 22, 3] (x = XY (x — x1),
then
P(xp) = fxo), P(x)) = f(x1), P'(x) = f'(x0), and P'(x;) = f'(xy),
which implies that P(x) = Hi(x).

- ) 3.5 Spline Interpolation

The previous sections use polynomials to approximate arbitrary functions. However, rela-
tively high-degree polynomials are needed for accurate approximation and these have some
serious disadvantages. They can have an oscillatory nature, and a fluctuation over a small
portion of the interval can induce large fluctuations over the entire range. We will see an
example of this later in this section.
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88 CHAPTER 3

Figure 3.7

Interpolation and Palynomial Approximation

An alternative approach is to divide the interval into a collection of subintervals and
construct a different approximating polynomial on each subinterval. This is called piecewise
polynomial approximation.

Piecewise-Polynomial Approximation

The simplest piecewise polynomial approximation joins the data points (xg, f(x0)),
(x1, f(x1)), ..., (xn, f(x,)) by aseries of straight lines, such as those shown in Figure 3.7.

A disadvantage of linear approximation is that the approximation is generally not dif-
ferentiable at the endpoints of the subintervals, so the interpolating function is not “smooth”
at these points. It is often clear from physical conditions that smoothness is required, and
the approximating function must be continuously differentiable.

e

y=f®

Isaac Jacob Schoenberg
(1903-1990) developed his work
on splines during World War IT at
the Army’s Ballistic Research
Laboratory in Aberdeen,
Maryland, while on leave from
the University of Pennsylvania.
His original work involved
numerical procedures for solving
differential equations. The much
broader application of splines to
the areas of data fitting and
computer-aided geometric design
became evident with the
widespread availability of
computers in the 1960s.
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One remedy for this problem is to use a piecewise polynomial of Hermite type. For
example, if the values of f and f' are known at each of the points xp < x; < -+ < X,
a cubic Hermite polynomial can be used on each of the subintervals [xp, x;], [x1, %2], .. .
[x—1, x,] to obtain an approximating function that has a continuous derivative on the interval
[%0, x,]. To determine the appropriate cubic Hermite polynomial on a given interval, we
simply compute the function H;(x) for that interval.

The Hermite polynomials are commonly used in application problems to study the
motion of particles in space. The difficulty with using Hermite piecewise polynomials for
general interpolation problems concerns the need to know the derivative of the function being
approximated. The remainder of this section considers approximations using piecewise
polynomials that require no derivative information, except perhaps at the endpoints of the
interval on which the function is being approximated.

Cubic Splines

The most common piecewise-polynomial approximation uses cubic polynomials between
pairs of nodes and is called cubie spline interpolation. A general cubic polynomial involves
four constants, so there is sufficient flexibility in the cubic spline procedure to ensure that
the interpolant has two continuous derivatives on the interval. The derivatives of the cubic
spline do not, in general, however, agree with the derivatives of the function, even at the
nodes. (See Figure 3.8.)
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35 Spline Interpolation

Figure 3.8

S(x) 1

sj{xj+lj =f(x,'+1) = sj-l-l(xj* .
Six;00) = 8hixp40)
87xj0) = 8741 (x549)

Cubic Spline Interpolation
Given a function f defined on [a, b] and a set of nodes,a = xy < x; <--- <X, =b,
a cubic spline interpolant, §, for f is a function that satisfies the following conditions:
(a) Foreach j =0,1,...,n—1, §(x) is a cubic polynomial, denoted by §;(x),
on the subinterval [x;, x;.).
(b) §;(x;) = f(x;)and §j(x;+1) = f(x;4y) foreach j=0,1,...,n— L
(€) Sjilxjr1) = §;(x;41) foreach j =0,1,...,n —2 (Implied by (b).)
@ 8,1 (je1) = §)(x;41) foreach j =0,1,...,n —2.
(e) S}'+1(xj+|)=Sj{(x_,-_;_]}for&achjsﬂ, { PR, 1
() One of the following sets of boundary conditions is satisfied:
(i) §"(xp) = 8"(x,) =0 (natural or free boundary);
(i) §'(x0) = f'(x0) and §'(x;) = f'(x,) (clamped boundary).

The root of the word “spline” is
the same as that of splint. It was

originally a small strip of wood . B . . .
that could be used to join two Although cubic splines are defined with other boundary conditions, the conditions

boards. Later the word was used  given in (f) are sufficient for our purposes. When the natural boundary conditions are used,
to refer to a long flexible strip, the spline assumes the shape that a long flexible rod would take if forced to go through
generally of metal, thatcould be  the points {(xp, f(x0)), (x1, f(x1)), ..., (xn, f(x,))]}. This spline continues linearly when
used to draw continuous smooth x < xpand when x > x,,.

curves by forcing the strip to pass

through specified points and

tracing along the curve.

Example 1 Construct a natural cubic spline that passes through the points (1, 2), (2, 3), and (3, 5).
Solution This spline consists of two cubics. The first for the interval [1, 2], denoted

So(x) = ap+ bo(x — 1) + co(x — 1)* + do(x — 1),
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90 CHAPTER 3 =

A natural spline has no conditions
imposed for the direction at its
endpoints, so the curve takes the
shape of a straight line after it
passes through the interpolation
points nearest its endpoints. The
name derives from the fact that
this is the natural shape a flexible
strip assumes if forced to pass
through specified interpolation
points with no additional
constraints. (See Figure 3.9.)

Figure 3.9

Clamping a spline indicates that
the ends of the flexible strip are
fixed so that it is forced to take a
specific direction at each of its
endpoints. This is important, for
example, when two spline
functions should match at their
endpoints. This is done
mathematically by specifying the
values of the derivative of the
curve at the endpoints of the
spline.

Interpolation and Polynomial Approximation

and the other for [2, 3], denoted
Six)=a; +bi(x - +ealx -2 +di(x — 2.

There are 8 constants to be determined, which requires 8 conditions. Four conditions come
from the fact that the splines must agree with the data at the nodes. Hence

2= f=ds, 3= f)=00+botG+d,
S5=f(@)=a1+by+c;+d;.

and

3=f2)=a,

Two more come from the fact that §;(2) = §{(2) and S;(2) = S{'(2). These are

§5(2)=51(2): bo+2co+3dy=b and S55(2)=587(2):  2co+ 6dy = 2c1.
The final two come from the natural boundary conditions:
S =0: 20=0 and ${3)=0: 2c,+6d =0.
Solving this system of equations gives the spline
3 1
2+ Z(.r— D+ E{x —1)3, forx € [1,2]
YiEy= 3 3 1
3+§(x—2)+1{x—2)3—5(x—2)3, forx € [2,3]. u

Construction of a Cubic Spline

In general, clamped boundary conditions lead to more accurate approximations because they
include more information about the function. However, for this type of boundary condition,
we need values of the derivative at the endpoints or an accurate approximation to those
values.

To construct the cubic spline interpolant for a given function f, the conditions in the
definition are applied to the cubic polynomials

S;(x) =a;+bj(x —x;) +¢;(x --x_,-)z +di(x — x_,-]j

foreach j =0,1,...,n— 1.
Since

S_;(x}] :dj = _f(x_i),
condition (c) can be applied to obtain
i =8a(x ) =8j(x;a) =a; +bj(xj —x;) + ¢ (x50 _xj)2+dj(xj+l —x,')3

foreach j=0,1,...,n—2.
Since the term x;.; — x; is used repeatedly in this development, it is convenient to
introduce the simpler notation
hy=xj—x;,
foreach j =0, 1,...,n — 1. If we also define a, = f(x,), then the equation
aj =a;+bjh; +c;h} +dh) 3.1

holds foreach j =0,1,...,n— 1L
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35 Spline Interpolation L) ]

In a similar manner, define b, = §'(x,) and observe that
8)(x) =b; +2¢;(x —x;) + 3d;(x — x;)? (3.2)
implies that S (x;) = b, foreach j = 0, 1,..., n — 1. Applying condition (d) gives
bjs1 = bj +2c;hj +3d;h’, (3.3)
foreach j=0,1,...,n—1.
Another relation between the coefficients of §; is obtained by defining ¢, = §"(x,)/2
and applying condition (e). In this case,
cipi=c;+3d;h;, (3.4)
foreach j=0,1,...,n=1.

Solving for d; in Eq. (3.4) and substituting this value into Egs. (3.1) and (3.3) gives
the new equations

h?
ajs1 = a; +bjhj + 3Qe; + ) 35)
and
bj+1=bj+hj((.'j+fj+!) (3-6)

foreachj=0,1,...,n—1.
The final relationship involving the coefficients is obtained by solving the appropriate
equation in the form of Eqg. (3.5) for b;,

1
b= (ﬂ;+1 a;) — (2«:, + cj1)s 3.7
and then, with a reduction of the index, for &;_,, which gives

1 by

bj = h—(ﬂj —@j—1) — JTI (2¢j-1 +¢j).
=1

Substituting these values into the equation derived from Eq. (3.6), when the index is reduced

by 1, gives the linear system of equations

3 3
hj'-Iqu +2(ﬁj_| +h_,-)c_,- + hj'cj-t-l = F(ﬂjél = ﬂj) — j!_—](aj —a_;-|} (3'8)
d 3=
foreach j =1, 2 ., — 1. This system involves only {c;}]_, as unknowns since the
values of {h;}} 2, and {a;}}_, are given by the spacing of the nodes {x;}?_, and the values
{f(x_r)} j=0"

Onw the values of {c;}]_, are determined, it is a simple matter to find the remainder
of the constants {b; }"Z.!, from Eq. (3.7) and {d; ]j:c from Eq. (3.4) and to construct the
cubic polynomials {S ()2 0 In the case of the clamped spline, we also need equations
involving the {c;} that ensure that §'(x0) = f'(xp) and §'(x,) = f'(x,). In Eq. (3.2) we
have 5’ (x) in terms of b, ¢;, and d;. Since we now know b; and d; in terms of ¢;, we can
use this equation to show that the appropriate equations are

3
2hgf.'u + hnﬁ‘l = h—(al o ﬂo) - 3_}”(}.’0} (3.9)
0
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Example 2

Interpolation and Palynomial Approximation

and

BpoiCnay + 2haicn = 3f'(xn) — (an = Gp-1). (3‘10)

2
hn—l

The solution to the cubic spline problem with the natural boundary conditions §”(xg) =
§"(x,) = Ocan be obtained by applying the program NCUBSP34. The program CCUBSP35
determines the cubic spline with the clamped boundary conditions §'(xp) = f'(xg) and
§'(xn) = f(xn).

Determine the clamped cubic spline for f(x) = x sin4x using the nodes xy = 0, x; = 0.25,
x; =0.4, and x5 = 0.6.

Solution 'We first define the function f(x) and its derivative fp(x) = f'(x) in MATLAB
with

£ = inline(’x*sin(4%x)’,’x’)
£p = inline(’sin(4%x)+4*x*cos(4*x)’,’x’)

We define the nodes using the MATLAB capability of defining subscripted variables within
square brackets, where a blank is used to separate entries. The subscripts in MATLAB begin
with 1 sox(1) =0, x(2) = 0.25, x(3) = 0.4, and x(4) = 0.6. This is entered in MATLAB
as

x = [0 0.25 0.4 0.6]

The step sizes are defined by

h = [x(2)-x(1) x(3)-x(2) x(4)-x(3)]

and the values of the function at the nodes by

a = [£(x(1)) £(x(2)) £(x(3)) £(x(4))]
MATLAB responds to this last command with

a=0 0210367746201974 0.399829441216602 0.405277908330691

A 4 x 4 array A is defined whose rows are defined by the system of equations used to
determine the quadratic coefficients, that is, the ¢’s. These are given in Egs. (3.8), (3.9),
and (3.10), but Eq. (3.9) involves an index of 0, which MATLAB does not permit. So the
indices must all be increased by 1 to compensate. So A is defined as follows:

Row 1: the left-hand side of Eq. (3.9), with all the indices increased by 1; that is:
2hicy +hica+0-c34+0-¢4.
Row 2: the left-hand side of Eq. (3.8) when j = 2:
hicy +2(hy + ha)ea +ha -e3 +0- ¢4
Row 3: the left-hand side of Eq. (3.8) when j = 3:

0-¢y + hacs + 2(hs + ha)cy + haes.
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35 Spline Interpolation 93

Row 4: the left-hand side of Eq. (3.10) whenn = 4:
0-¢; +0- ¢z + hacs + 2hacs.
This gives

A=[ 2%n(1) h(1) 0 0; h(1) 2%(h(1)+n(2)) h(2) 0; 0 h(2)
2%(h(2)+h(8)) h(3); 0 0 h(3) 2%h(3)]

The right-hand sides of the same equations are stored in the 4 x 1 array B.
Row 1: the right-hand side of Eq. (3.9), with all the indices increased by 1; that is:

3
e (az—ay) —3f'(x).
1
Row 2: the right-hand side of Eq. (3.8) when j = 2:
3 3
E(ﬂa —a) — E(ﬂz —ay).
Row 3: the right-hand side of Eq. (3.8) when j = 3:
3 3
h—a(ﬁa —a3) — h—z(az- —@m).
Row 4: the right-hand side of Eq. (3.10) whenn = 4:
i 3
3f(xs) — h—(d-t — ).
3
So B is defined by
B = [3x(a(2)-a(1))/h(1) - 3*fp(x(1));
3*(a(3)-a(2))/h(2)-3*(a(2)-a(1))/h(1);

3% (a(4)-a(3))/n(3)-3%(a(8)-a(2))/h(2);
3ufp(x(4))-3%(a(4)-a(3))/n(3)]

MATLAB gives these as
0.500000000000000  0.250000000000000 0 0
A 0.250000000000000  0.800000000000000  0.150000000000000 0
- 0 0.150000000000000 0.700000000000000 0.200000000000000
0 0 0.200000000000000  0.400000000000000
and
2.524412954423689
B= 1.264820945868869
—3.707506893581232
—3.364572216954841

We now can have MATLAB solve the system using the 1inselve command.

¢ = linsolve(A,B)
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94 CHAPTER 3 = Interpolation and Palynomial Approximation

MATLAB responds with solution consisting of ¢(1), ¢(2), ¢(3), and c(4) as

4.649673230468573
0.798305356757612
—3.574944314362422
—6.623958385205892

Now use Eq. (3.7) to obtain the values of b(1), b(2), and b(3) with the command

b = [(a(2)-a(1))/h(1) - h(1)*(2*c(1)+c(2))/3;
(a(3)-a(2))/h(2) - h(2)*(2%c(2)+c(3))/3;
(a(4)-a(3))/h(3) - h(3)*(2%c(3)+c(4))/3]

which MATLAB gives as

1.361994646806546

0.000000000000000
b=
0.945498803165825

Finally, the values of d(1), d(2), and d(3) are obtained using Eq. (3.4) and the command

d = [(c(2)-c(1))/(3%h(1)); (c(3)-c(2))/(3*n(2));
(c(4)-c(3))/(3%n(3))]

producing

d = | —9.718332602488962

—5.081690118072451

—35.135157164947948 }

This implies that the cubic spline, to three decimal places, is as shown in Table 3.13.

Table31s o 5, = i
0 0.000 0.000 0.000 4.650 -5.135
1 0.250 0.210 1.362 0.798 —6.718
2 0.400 0.400 0.945 -3.575 —-5.082
3 0.600 0.405 —6.624

In the following Illustration the shape of the curve is much more complex. Placing a
minimal number of data points along the curve to get a good representation would require
some experimentation.

lllustration  Figure 3.10 shows a ruddy duck in flight. To approximate the top profile of the duck, we
have chosen points along the curve through which we want the approximating curve to pass.
Table 3.14 lists the coordinates of 21 data points relative to the superimposed coordinate
system shown in Figure 3.11. Notice that more points are used when the curve is changing
rapidly than when it is changing more slowly.
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35 Spline Interpolation 95

Figure 3.10
Figure 3.11
flx) 4
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Table 3.14

x ‘0.9|l.3|1.9 |2.1|2.6|3,0|3.9|4.4 |4.1r |5.0|5.0 |?.0|3.u |9.2 ]10.5|11.3|1:.6|12.0|12.6|13.0|13.3
feo 13|15 185]2.1|26|27 24| 215] 205 [ 21225 |23 225|195 | 14| 09] 07] 06| 05| 04/ 025

Using the program NCUBSP34 to generate the natural cubic spline for this data pro-
duces the coefficients shown in Table 3.15. This spline curve is nearly identical to the profile,
as shown in Figure 3.12.

For comparison purposes, Figure 3.13 gives an illustration of the curve that is gen-
erated using a Lagrange interpolating polynomial to fit the data given in Table 3.14. The
interpolating polynomial in this case is of degree 20 and oscillates wildly. It produces a
very strange illustration of the back of a duck, in flight or otherwise.
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96 CHAPTER 3 = Interpolation and Palynomial Approximation

Table 3.15 Figure 3.12
x) A
J % a4 b ¢ 4 =
0 09 13 540 000 —025 4
1 13 15 042 —030 095 3
2 19 185 109 141 -296 A 8
3 2121 129 -037 —045 2
4 2626 059 —1.04 045 1
5 3027 -002 —-050 017 - = > | .
6 39 24 —-050 —0.03 008 2 3 4 5 JI 7 B,9-10 11 12 13 x
7 44 215 048 008 131 ]
8 47 205 —007 127 —158
9 5021 026 —016 004 |
10 60 225 008 —003 0.00 By
11 70 23 001 —004 —0.02 il
12 80 225 —0.14 —0.11 002 -
13 92 195 -034 —0.05 —0.01
14 105 14 -053 -010 —0.02

15 113 09 -0.73 -0.15 121
16 116 0.7 -049 094 —0.84
17 120 0.6 -0.14 —-0.06 0.04
18 12,6 0.5 -0.18 0.00 —0.45
19 130 04 -039 -054 060

Figure 3.13
f(x)

To use a clamped spline to approximate this curve we would need derivative approx-
imations for the endpoints. Even if these approximations were available, we could expect
little improvement because of the close agreement of the natural cubic spline to the curve
of the top profile. O

Cubic splines generally agree quite well with the function being approximated, provided
that the points are not too far apart and the fourth derivative of the function is well behaved.
For example, suppose that f has four continuous derivatives on [a, b] and that the fourth
derivative on this interval has a magnitude bounded by M. Then the clamped cubic spline
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35 Spline Interpolation 97

S(x) agreeing with f(x) at the points @ = xy < x; < --+ < x, = b has the property that
for all x in [a, b],

5M
< max (xj41 — x;)*

e sel = o ek

A similar—but more complicated—result holds for the natural cubic splines.

EXERCISE SET 35

1. Determine the natural cubic spline § that interpolates the data f(0) =0, f(1) = 1,and f(2) = 2.

2.  Determine the clamped cubic spline s that interpolates the data f(0) =0, f(1) = 1, f(2) = 2and
satisfies s'(0) = 5" (2) = 1.

3. Construct the natural cubic spline for the following data.

a. b. =x f(x)
8.3 | 17.56492 0.8 | 0.22363362
8.6 | 18.50515 1.0 | 0.65809197
c. d =x fx)
—0.5 | —0.0247500 0.1 | —0.62049958
—0.25 0.3349375 0.2 | —0.28398668
0 1.1010000 0.3 0.00660095
0.4 0.24842440

4.  Thedatain Exercise 3 were generated using the following functions. Use the cubic splines constructed
in Exercise 3 for the given value of x to approximate f(x) and f'(x), and calculate the actual error.

a.  f(x)=xInx; approximate f(8.4) and f'(8.4).
b. f(x) =sin{e* —2); approximate £(0.9) and f'(0.9).
e f(x) =x44.001x* +4.002x + 1.101; approximate f(—1) and f'(-1).
d. f(x)=xcosx —2x>+3x—1; approximate £(0.25) and f'(0.25).
5.  Construct the clamped cubic spline using the data of Exercise 3 and the fact that
a. f'(8.3) =3.116256 and f'(8.6) = 3.151762
b.  f'(0.8) = 2.1691753 and f'(1.0) = 2.0466965
c.  f'(—0.5) =0.7510000 and f'(0) = 4.0020000
d. f'(0.1) = 3.58502082 and f'(0.4) = 2.16529366
6.  Repeat Exercise 4 using the clamped cubic splines constructed in Exercise 5.
7. a.  Construct a natural cubic spline to approximate f(x) = cossrx by using the values given by
fix)ax =0,0.25,0.5,0.75, and 1.0.
b. Integrate the spline over [0, 1], and compare the result to fu] cosmxdx =0.

c.  Use the derivatives of the spline to approximate f'(0.5) and f"(0.5), and compare these ap-
proximations to the actual values.

8. a. Construct a natural cubic spline to approximate f(x) = e * by using the values given by f(x)
atx =0,0.25, 0.75, and 1.0.

b. Integrate the spline over [0, 1], and compare the result to _ﬂ: etdx=1-1/e
c.  Use the derivatives of the spline to approximate f'(0.5) and f”(0.5), and compare the approxi-
mations to the actual values.
9.  Repeat Exercise 7, constructing instead the clamped cubic spline with f(0) = f'(1) = 0.
10. Repeat Exercise 8, constructing instead the clamped cubic spline with f'(0) = -1, f'(1) = —e~L
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98 CHAPTER 3 = Interpolation and Polynomial Approximation

11. A natural cubic spline S on [0, 2] is defined by

SG) = Solx) = 142x — 53, fl<sx<l
TS =a+bx—D+elx—1P+dx—17, ifl<xr<2

Finda, b, c, and d.
12, A clamped cubic spline s for a function f is defined on [1, 3] by

did = sx) =3x—-1)+2(x—1P*—(x - 1), ifl<x<2,
- s(x)=a+b(x -2 +clx—2P+d(x—-2), if2=<x<3.

Given f'(1) = f'(3), finda, b, ¢, and d.
13. A natural cubic spline § is defined by

() = So(x) =14+ B(x—-1) - D(x—1), iflsx<?2,
TS0 =146 -2 - 3x -2 +dx—2)°, if 2<x<3.

If § interpolates the data (1, 1), (2, 1), and (3,0), find B, D, b, and d.
14. A clamped cubic spline s for a function f is defined by

#e) = so(x) = 1+ Bx +2x* — 2+%, if0=x<l,
T s =1+bx—-1)—4Gx—-1P+Tx -1, ifl<x<2

Find f'(0) and f*(2).

15.  Suppose that f(x) is a polynomial of degree 3. Show that f(x) is its own clamped cubic spline but
that it cannot be its own natural cubic spline.

16. Suppose the data {x;, f(x;))}"_, lie on a straight line. What can be said about the natural and clamped
cubic splines for the function f? [Hint: Take a cue from the results of Exercises | and 2.]

17. The data in the following table give the population of the United States for the years 1960 10 2010
and were considered in Exercise 16 of Section 3.2 and Exercise 6 of Section 3.3.

Year | 1960 | 1970 | 1980 | 1990 | 2000 | 2010
Population (thousands) | 179,323 | 203,302 | 226,542 | 249,633 | 281,442 | 307,746

a. Find a natural cubic spline agreeing with these data, and use the spline to predict the population
in the years 1950, 1975, and 2020.

b. Compare your approximations with those previously obtained. If you had to make a choice,
which interpolation procedure would you choose?

18. A car traveling along a straight road is clocked at a number of points. The data from the observations
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is
in feet per second.

Time 0 3 5 8 13
Distance | 0 | 225 | 383 | 623 | 993
Speed 5| TP & | 74| T2

a.  Use a clamped cubic spline to predict the position of the car and its speed when 1 = 10s.
b.  Use the derivative of the spline to determine whether the car ever exceeds a 55-mi/h speed limit
on the road; if so, what is the first time the car exceeds this speed?
c.  What is the predicted maximum speed for the car?
19. The 2011 Kentucky Derby was won by a horse named Animal Kingdom (at 20:1 odds) in a time of
2:02.04 (2 minutes and 2.04 seconds) for the | ﬁ-mile race. Times at the quarter-mile, half-mile, and
mile poles were 0:24.26, 0:59.68, and 1:47.95.
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36 Parametric Curves 99

a. Use these values together with the starting time to construct a natural cubic spline for Animal
Kingdom’s race.

b.  Use the spline to predict the time at the three-quarter-mile pole, and compare this to the actual
time of 1:24.40.

c.  Use the spline to approximate Animal Kingdom's speed at the finish line.

20.  Itissuspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter
moth (Operophtera bromata L., Geometridae) larvae that extensively damage these trees in certain
years. The following table lists the average weight of two samples of larvae at times in the first 28 days
after birth. The first sample was reared on young oak leaves, whereas the second sample was reared
on mature leaves from the same tree.

a.  Use a natural cubic spline to approximate the average weight curve for each sample.

b. Find an approximate maximum average weight for each sample by determining the maximum

of the spline.
Day 0 6 10 13 17 20 28
Sample 1 average | 6.67 | 17.33 | 42.67 | 37.33 | 30.10 | 29.31 | 28.74
weight (mg)
Sample 2 average | 6.67 | 16.11 | 18.89 | 1500 | 10.56 | 944 | 8.89
weight (mg)

- L 3.6 Parametric Curves

None of the techniques we have developed can be used to generate curves of the form shown
in Figure 3.14, because this curve cannot be expressed as a function of one coordinate
variable in terms of the other. In this section we will see how to represent general curves by
using a parameter to express both the x- and y-coordinate variables. This technique can be
extended to represent general curves and surfaces in space.

Figure 3.14
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