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b. Repeat (a) with the Hermite interpolating polynomial of degree at most 5, using x0 = 1,

= 1.05, and x2 = 1.07.

5. Use the error formula and MATLAB to find a bound for the errors in the approximations of /(x) in
(a) and (c) of Exercise 2.

6. The following table lists data for the function described by /(x) = e01*
2. Approximate /(1.25) by

using //5(1.25) and //3(1.25), where uses the nodes Xo = 1, xj = 2, and x2 = 3 and uses the

nodes x0 = 1 and X! = 1.5. Find error bounds for these approximations.

X f i x ) = e01*
2

f i x ) = 0.2xe01*
2

x0 = x0 = 1 1.105170918 0.2210341836

X! = 1.5 1.252322716 0.3756968148

*1 = 2 1.491824698 0.5967298792
x2 = 3 2.459603111 1.475761867

7. A car traveling along a straight road is clocked at a number of points. The data from the observations

are given in the following table, where the time is in seconds, the distance is in feet, and the speed is

in feet per second.

Time 0 3 5 8 13

Distance 0 225 383 623 993

Speed 75 77 80 74 72

a. Use a Hermite polynomial to predict the position of the car and its speed when t = 10 s.

b. Use the derivative of the Hermite polynomial todetermine whether the car ever exceedsa 55-mi/h

speed limit on the road. If so, what is the first time the car exceeds this speed?

c. What is the predicted maximum speed for the car?

8. Let zo = x0 . Z\ = x0, Z2 = X|, and z3 = xi. Form the following divided-difference table.

Zo = *o /[zo] = /(*o)

/[zo.Zt] = /'(*o)

Z i = X0 / lZ|] = /(*o) /[Zo, Zi , Z2]

/[ZI. Z2] /[Zo, Zl , Z2, Z3]

Z2 = *l /[Z2] = /(*l ) /[ZI. Z2. Z3]

/[Z2. Z3] = /'(*l)

Z3 = *l /[Z3] = /(*l )

Show if

P ( x ) = f [ z0 ) + /[z0. Zi ](x - x0) + /[z0, Z|, z2](*- xo )2 + /[z0, zi , z2, z3 ] ( x - x0 )2( x -x, ).
then

P (xo) = fixo), PM = /(X,). P' ixo) = f\xo), and P'(x.) = /'(*.).
which implies that P ( x ) = H3 ( x ).

3.5 Spline Interpolation

The previous sections use polynomials to approximate arbitrary functions. However, rela-
tively high-degree polynomials are needed for accurate approximation and these have some
serious disadvantages. They can have an oscillatory nature, and a fluctuation over a small
portion of the interval can induce large fluctuations over the entire range. We will see an
example of this later in this section.
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88 C H A P T E R 3 Interpolation and Polynomial Approximation

An alternative approach is to divide the interval into a collection of subintervals and

construct a different approximating polynomial on each subinterval.This is called piecewise

polynomial approximation.

Piecewise-Polynomial Approximation

The simplest piecewise polynomial approximation joins the data points (xo, /(xo)),
(*i , f ( x \ )), ... , (x„, / (*„ )) by a series of straight lines, such as those shown in Figure 3.7.

A disadvantage of linear approximation is that the approximation is generally not dif-
ferentiable at the endpoints of the subintervals, so the interpolating function is not “smooth”

at these points. It is often clear from physical conditions that smoothness is required, and

the approximating function must be continuously differentiable.
Figure 3.7
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Isaac Jacob Schoenberg

(1903-1990) developed his work

on splines during World War II at

the Army’s Ballistic Research

Laboratory in Aberdeen,

Maryland, while on leave from

the University of Pennsylvania.

His original work involved

numerical procedures for solving

differential equations. The much

broader application of splines to

the areas of data fitting and

computer-aided geometric design

became evident with the

widespread availability of

computers in the 1960s.

One remedy for this problem is to use a piecewise polynomial of Hermite type. For
example, if the values of / and /' are known at each of the points xo < x\ < • • • < x„,
a cubic Hermite polynomial can be used on each of the subintervals [xo, x j ], [x j, X2], .. .,

, xn ] toobtain an approximating function that has a continuous derivativeon the interval
[xo, xn ].To determine the appropriate cubic Hermite polynomial on a given interval, we
simply compute the function H$ ( x ) for that interval.

The Hermite polynomials are commonly used in application problems to study the
motion of particles in space. The difficulty with using Hermite piecewise polynomials for
general interpolation problemsconcerns the need to know the derivative of the function being

approximated. The remainder of this section considers approximations using piecewise
polynomials that require no derivative information, except perhaps at the endpoints of the

interval on which the function is being approximated.

Cubic Splines

The most common piecewise-polynomial approximation uses cubic polynomials between
pairs of nodes and is called cubic spline interpolation. A general cubic polynomial involves

four constants, so there is sufficient flexibility in the cubic spline procedure to ensure that
the interpolant has two continuous derivatives on the interval. The derivatives of the cubic
spline do not, in general, however, agree with the derivatives of the function, even at the

nodes. (See Figure 3.8.)
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3.5 Spline Interpolation 89

Figure 3.8
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Cubic Spline Interpolation

Given a function / defined on [a , b ) and a set of nodes, a = xo < x\ < • • • < xn = b ,

a cubic spline interpolant, S , for / is a function that satisfies the following conditions:

(a) For each j = 0, 1, . . . , n — 1, S(;t ) is a cubic polynomial, denoted by S j ( x ) ,

on the subinterval [x j , X j+ j).

(b) S j (X j ) = f ( x j ) and S j ( x j+1) = f ( x j+1) for each j = 0, 1, . .. , n - 1.

(c) S,+ i (*j+ i ) = S;(*,+ i ) for each j = 0, 1, . . . , n - 2 (Implied by (b).)

(d) S'j+ l ( Xj+1) = S j (X j+ j ) for each j = 0, 1, . . . , n - 2.

(e) SJ+1(x,+i) = SJ(*y+i) for each; = 0,1 n-2.
(f) One of the following sets of boundary conditions is satisfied:

(i) S"(*o) = $"(*„) = 0 (natural or free boundary);

(ii) S'(xo) = f ( x0) and S'(x„ ) = f\xn ) (clamped boundary).

Six )

S I

So

2

s
S

SjXxj+\ ) — Sj+ x( Xj+ ,)

T h e root of the word “spline” is

the same as that of splint. It was

originally a small strip of wood

that could be used to join two

boards. Later the word was used

to refer to a long flexible strip,

generally of metal, that could be

used to draw continuous smooth

curves by forcing the strip to pass

through specified points and

tracing along the curve.

Example 1

Although cubic splines are defined with other boundary conditions, the conditions
given in (0 are sufficient for our purposes. When the natural boundary conditions are used,

the spline assumes the shape that a long flexible rod would take if forced to go through
the points {(*o, / (*o)). (*i . /C*i )), . . . , (x„, / (*„ ))}. This spline continues linearly when
x < XQ and when x > xn .

Construct a natural cubic spline that passes through the points ( 1 , 2), (2, 3), a n d (3 , 5) .

Solution This spline consists of two cubics. The first for the interval ( 1 , 2), denoted

So(*) = ao + bo( x - 1) + cQ(x - l )2 -f dQ ( x - 1)\
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90 CH A P TER 3 Interpolation and Polynomial Approximation

A natural spline has no conditions

imposed for the direction at its

endpoints, so the curve lakes the

shape of a straight line after it

passes through the interpolation

points nearest its endpoints. The

name derives from the fact that

this is the natural shape a flexible

strip assumes if forced to pass

through specified interpolation

points with no additional

constraints. (See Figure 3.9.)

and the other for [2, 3], denoted

s,(*) = a, + M*- 2) + ci (x - 2 )2 + </,(*- 2 )\

There are 8 constants to be determined, which requires 8 conditions. Four conditions come
from the fact that the splines must agree with the data at the nodes. Hence

2 = / (1) = a0 , 3 = /(2) = oo + *>0 + 0) + do, 3 = /(2) = au and

5 = / (3) = a\ + b\ + C] 4- d\ .

Two more come from the fact that 5Q(2) = 5J (2) and SQ ( 2) = SJ'(2). These are

So(2) = 51(2) : bo + 2c0 + 3do = bx and S£(2) = $;'(2) : 2c0 + 6d0 = 2c,.
The final two come from the natural boundary conditions:

$o (l) = 0 : 2c0 = 0 and $;'(3) = 0 : 2c\ + 6d\ = 0.

Figure 3.9 Solving this system of equations gives the spline

S(x )

2 + ? (*- l) + j(*- l)\ for* e [1, 2]
4 4

3 +\{x 2) +|(JC - 2 )2 -
l
- ( x - 2)\ for* [2, 3],

2 4 4

Construction of a Cubic Spline

Clamping a spline indicates that

the ends of the flexible strip are
fixed so that it is forced to take a

specific direction at each of its

endpoints. This is important, for

example, when two spline

functions should match at their

endpoints. This is done

mathematically by specifying the

values of the derivative of the

curve at the endpoints of the

spline.

In general,clamped boundary conditions lead to more accurate approximations because they

include more information about the function. However, for this type of boundary condition,

we need values of the derivative at the endpoints or an accurate approximation to those

values.
To construct the cubic spline interpolant for a given function /, the conditions in the

definition are applied to the cubic polynomials

S j (x ) = a} + b j ( x - X j )+C j (x- x j )2 + d j (x - x j)3

for each j = 0, 1,..., n — I.
Since

S j l x j ) = d j = f ( x j ) ,

condition (c) can be applied to obtain

tfy+i = Sj+ i lx j+ i ) = S j ( x j+1 ) = a j + bj ( xj+1 - x j ) + C j ( x j+1 - X j )2 + dj lx j+ i - X j)
3

for each j = 0, 1,... , n — 2.
Since the term x j+ j - x j is used repeatedly in this development, it is convenient to

introduce the simpler notation

hi = xi+1 “ xb

for each j = 0, 1, . . . . n — 1. I f w e also define a n = / (*„), then the equation

a j+i = d j + b j h j +C j h2 + d j h j (3.1)

holds for each j = 0,1, ... , n — 1.
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3.5 Spline Interpolation 91

In a similar manner, define bn = S' ( xn ) and observe that

S' W = b j + 2C j ( x - x j ) + 3d j ( x - X j )2 (3.2)

implies that S' (*y) = bj for each j = 0,1,... , n — I. Applying condition (d) gives

b j+1 = b j 4- 2C j h j 4- 3d j h2
j , (3.3)

for each; = 0, 1, ... , « -1.
Another relation between the coefficients of Sj is obtained by defining cn = S" ( xn )/ 2

and applying condition (e). In this case,

C j+1 = C j 4- 3d j h j t (3.4)

for each j = 0, 1,... , n — 1.
Solving for dj in Eq. (3.4) and substituting this value into Eqs. (3.1) and (3.3) gives

the new equations

and

h2
:

aj+i = Q j + b j h j + -y-(2C j + cj+i ) (3.5)

b j+i = b j + h j (c j 4- C j+ j ) (3.6)

for each j = 0, 1,...,n — 1.
The final relationship involving the coefficients is obtained by solving the appropriate

equation in the form of Eq. (3.5) for bj ,

1 h
bj = — (fly+1 - fly)- ~/ (2c; H- cy+ i), (3.7)

h j 3

and then, with a reduction of the index, for bj-u which gives

bj-1 = 7 (fly ~ Oj- \ ) 4^(2Cy
_

i + Cy).
";-l J

Substituting these values into the equation derived from Eq. (3.6), when the index is reduced
by 1, gives the linear system of equations

3 3
hj-\Cj-\ 4- 2(/»y

_
i 4- hj )cj 4- /»yCy+ i = — (ay+ i - ay )- -— (ay - ay

_
i) (3.8)

hj hj-\
for each j = 1, 2, ... , /i — 1. This system involves only {cy}”=0 as unknowns since the

values of {hj }*!,$ and {ay}'* =0 are given by the spacing of the nodes {*y}y«o and the values

o-
Once the values of {cy}"=0 are determined, it is a simple matter to find the remainder

of the constants {bj )*Z^ from Eq. (3.7) and {dy )"~
Q from Eq. (3.4) and to construct the

cubic polynomials {Sy (*)}yli. In the case of the clamped spline, we also need equations
involving the {cy } that ensure that S'(JCO) = / '(*o) and S' (xn ) = /'(*„). In Eq. (3.2) we
have S'

j
(x) in terms of bj , cy , and dj.Since we now know bj and dj in terms of cy, we can

use this equation to show that the appropriate equations are

3
2h0c0 4- h0ci = — (a,- oo)-3 f ' (x0 ) (3.9)

ho
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92 C H A P T E R 3 Interpolation and Polynomial Approximation

Program NCUBSP34

creates a Natural Cubic

Spline

Example 2

Program CCUBSP35

creates a Clamped Cubic

Spline

and

3
hn-\cn-\ 4 2hn^ c„ = 3/ '(*„) - 7— ifln ~ an-1). (3.10)

hn-\
The solution to the cubic spline problem with the natural boundary conditions S"(*o) =

S"( xn ) = 0 can be obtained by applying the program NCUBSP34.The program CCUBSP35
determines the cubic spline with the clamped boundary conditions S' ( xo ) = /'(JCO) and

S' (xn ) = /'(*„).

Determine the clamped cubic spline for f ( x ) = x sin 4x using the nodes XQ = 0, JCJ = 0.25,

x2 = 0.4, and *3 = 0.6.

Solution We first define the function /(x) and its derivative f p( x ) s / '(x ) in MATLAB
with

f = inline ( ’ x* sin ( 4* x) * , * x * )
fp = inline ( , sin ( 4* x) +4* x * cos( 4* x) J , ’ x ’ )

We define the nodes using the MATLAB capability of defining subscripted variables within

square brackets, where a blank is used to separate entries.The subscripts in MATLAB begin

with 1 so JC(1) = 0, x (2) = 0.25, x(3) = 0.4, and x (4) = 0.6. This is entered in MATLAB
as

x = [ 0 0.25 0.4 0.6 ]

The step sizes arc defined by

h = Cx( 2)- x( l ) x( 3) - x( 2) x( 4) - x( 3)]

and the values of the function at the nodes by

a = [ f( x( l )) f ( x( 2)) f ( x( 3)) f ( x( 4)) ]

MATLAB responds to this last command with

a = 0 0.210367746201974 0.399829441216602 0.405277908330691

A 4 x 4 array A is defined whose rows are defined by the system of equations used to

determine the quadratic coefficients, that is, the c’s. These are given in Eqs. (3.8), (3.9),

and (3.10), but Eq. (3.9) involves an index of 0, which MATLAB does not permit. So the

indices must all be increased by 1 to compensate. So A is defined as follows:

Row 1: the left-hand side of Eq. (3.9), with all the indices increased by 1; that is:

2h\C\ 4 h\c2 4 0 • C3 4 0 • C4.

Row 2: the left-hand side of Eq. (3.8) when j = 2:

h\C\ 4 2{h\ 4 h2 )c2 -f h2 • C3 4 0 • c4.

Row 3: the left-hand side of Eq. (3.8) when j = 3:

0 • c\ 4 h2c2 4 2{h2
«f /*3)^3 4 /23^4 -
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3.5 Spline Interpolation 93

Row 4: the left-hand side of Eq. (3.10) when n = 4:

0 • Ci + 0 • C2 •+ h3c3 -f- 2/13C4.

This gives

A = [ 2*h ( l ) h ( l ) 0 0; h ( l ) 2* (h ( l )+h (2) ) h (2) 0; 0 h (2)

2*(h (2) +h (3) ) h (3) ; 0 0 h(3) 2*h (3)]

The right-hand sides of the same equations are stored in the 4 x 1 array B.

Row 1: the right-hand side of Eq. (3.9), with all the indices increased by 1; that is:

^- (a2 - ai ) - 3/'(*i ).

Row 2: the right-hand side of Eq. (3.8) when j = 2:

3 3
— (a ) -a2 ) ~ -(a2 - at).
h2 hi

Row 3: the right-hand side of Eq. (3.8) when j = 3:

3 3
r-(a4 - as ) - r-(a3 - a2).
«3 n2

Row 4: the right-hand side of Eq. (3.10) when n = 4:

So B is defined by

B = [3* (a (2)-a( l ) ) /h( l ) - 3*fp (x (l ) ) ;

3* (a(3)-a(2) ) /h (2)-3* (a(2) -a(l ) ) /h( l ) ;

3* (a(4)-a(3) ) /h (3)-3* (a(3) -a(2) ) /h(2) ;

3*fp(x (4) )-3* (a(4) -a(3) ) /h (3)]

MATLAB gives these as

A =

1:1:111101010:111:1:10.5(

0.250000000000000
0

0

0.250000000000000

0.800000000000000
0.150000000000000

0

0

0.150000000000000

0.700000000000000

0.200000000000000

0

0
1:1 in •0.2(

0.400000000000000

and

2.524412954423689
’

1.264820945868869
“

-3.707506893581232
_ -3.364572216954841 _

We now can have MATLAB solve the system using the linsolve command .

c = l insolve ( A , B)
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94 C H A P T E R 3 Interpolation and Polynomial Approximation

Table 3.13

Illustration

MATLAB responds with solution consisting of c( l ), c(2), c(3), and c(4) as

4.649673230468573
'

0.798305356757612
C “ -3.574944314362422_ -6.623958385205892

Now use Eq. (3.7) to obtain the values of 6(1), 6(2), and 6(3) with the command

b = [(a(2)-a ( l ) ) /h( l) - h (l )* (2*c ( l ) +c (2) ) /3;

(a (3)-a(2) ) /h (2) - h (2)* (2*c (2) +c (3) ) /3;
(a (4)-a(3) ) /h (3) - h (3)* (2*c (3) +c (4) ) /3]

which MATLAB gives as

6 =
0.000000000000000
1.361994646806546
0.945498803165825

Finally, the values of d ( l ), d (2), and d (3) are obtained using Eq. (3.4) and the command

d - [(c(2)-c(l ) ) / (3*h(l) ) ; (c (3)-c (2) ) / (3*h (2) ) ;

(c (4)-c (3) ) / (3*h (3) )]

producing

d =
-5.135157164947948
-9.718332602488962

-5.081690118072451

This implies that the cubic spline, to three decimal places, is as shown in Table 3.13.

j o j b j C j d j

0 0.000 0.000 0.000 4.650 -5.135
1 0.250 0.210 1.362 0.798 -9.718
2 0.400 0.400 0.945 -3.575 -5.082
3 0.600 0.405 -6.624

In the following Illustration the shape of the curve is much more complex. Placing a
minimal number of data points along the curve to get a good representation would require
some experimentation.

Figure 3.10 shows a ruddy duck in flight. To approximate the top profile of the duck, we
have chosen points along the curve through which we want the approximating curve to pass.
Table 3.14 lists the coordinates of 21 data points relative to the superimposed coordinate
system shown in Figure 3.11. Notice that more points are used when the curve is changing

rapidly than when it is changing more slowly.
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3.5 Spline Interpolation 95

Figure 3.10
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Table 3.14

X 0.9 1.3 1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3

f i x ) 1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25

Using the program NCUBSP34 to generate the natural cubic spline for this data pro-
duces the coefficients shown in Table 3.15.This spline curve is nearly identical to the profile,

as shown in Figure 3.12.
For comparison purposes, Figure 3.13 gives an illustration of the curve that is gen-

erated using a Lagrange interpolating polynomial to fit the data given in Table 3.14. The
interpolating polynomial in this case is of degree 20 and oscillates wildly. It produces a
very strange illustration of the back of a duck, in flight or otherwise.
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96 C H A P T E R 3 Interpolation and Polynomial Approximation

Table 3.15 Figure 3.12

j X J a j b j C J d j

0 0.9 1.3 5.40 0.00 -0.25

1 1.3 1.5 0.42 -0.30 0.95
2 1.9 1.85 1.09 1.41 -2.96
3 2.1 2.1 1.29 -0.37 -0.45
4 2.6 2.6 0.59 -1.04 0.45
5 3.0 2.7 -0.02 -0.50 0.17
6 3.9 2.4 -0.50 -0.03 0.08

7 4.4 2.15 -0.48 0.08 1.31
8 4.7 2.05 -0.07 1.27 -1.58
9 5.0 2.1 0.26 -0.16 0.04

10 6.0 2.25 0.08 -0.03 0.00
11 7.0 2.3 0.01 -0.04 -0.02
12 8.0 2.25 -0.14 -0.11 0.02
13 9.2 1.95 -0.34 -0.05 -0.01
14 10.5 1.4 -0.53 -0.10 -0.02
15 11.3 0.9 -0.73 -0.15 1.21
16 11.6 0.7 -0.49 0.94 -0.84
17 12.0 0.6 -0.14 -0.06 0.04

18 12.6 0.5 -0.18 0.00 -0.45
19 13.0 0.4 -0.39 -0.54 0.60
20 13.3 0.25

fix )

J
V .

/

$ - -4^10 11 12 13

/
/

/
i

Figure 3.13
f i x )

r
r\—— f\

\j\ ft
* 2 t 5 6 ' £ >-l 0 11 12 \

f

j

y

To use a clamped spline to approximate this curve we would need derivative approx-
imations for the endpoints. Even if these approximations were available, we could expect
little improvement because of the close agreement of the natural cubic spline to the curve
of the top profile.

Cubic splines generally agreequite well with the function being approximated, provided

that the points are not too far apart and the fourth derivative of the function is well behaved.
For example, suppose that / has four continuous derivatives on [a , b ] and that the fourth

derivative on this interval has a magnitude bounded by Af . Then the clamped cubic spline
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3.5 Spline Interpolation 97

S i x) agreeing with f i x) at the points a — xo < X|< • • • < x n = b has the property that

for all x in [a , b\.
5 M

A similar—but more complicated—result holds for the natural cubic splines.

E X E R C I S E S E T 3 . 5

1.

2.

3.

Determine the natural cubic spline S that interpolates the data /(0) = 0, /(1) = 1, and /(2) = 2.

Determine the clamped cubic spline s that interpolates the data /(0) = 0, /(1) = 1, /(2) = 2 and

satisfies s'(0) = s'(2) = 1.

Construct the natural cubic spline for the following data.
a.

c.

X f i x )

8.3 17.56492
8.6 18.50515

X f i x)

-0.5 -0.0247500
-0.25 0.3349375

0 1.1010000

X f i x )

0.8 0.22363362
1.0 0.65809197

X f i x )

0.1 -0.62049958
0.2 -0.28398668
0.3 0.00660095
0.4 0.24842440

4. The data in Exercise 3 were generated using the following functions. Use the cubic splines constructed
in Exercise 3 for the given value of x to approximate /(x) and /'(x), and calculate the actual error.
a. /(x) = xlnx; approximate /(8.4) and /'(8.4).

b. /(x) = sin(e* - 2); approximate /(0.9) and /'(0.9).

c. /(x) = x3 + 4.001x2 + 4.002* + 1.101; approximate f i —\ ) and /'(— 5).
d. /(x) = x cosx - 2x 2 + 3x — 1; approximate /(0.25) and /'(0.25).

5. Construct the clamped cubic spline using the data of Exercise 3 and the fact that

a. /'(8.3) = 3.116256 and /'(8.6) = 3.151762

b. /'(0.8) = 2.1691753 and /'(1.0) = 2.0466965

c. /'(-0.5) = 0.7510000 and / '(0) = 4.0020000

d. /'(0.1) = 3.58502082 and /'(0.4) = 2.16529366

6. Repeat Exercise 4 using the clamped cubic splines constructed in Exercise 5.

7. a. Construct a natural cubic spline to approximate /(x) = COSTTX by using the values given by

/(x) at x = 0.0.25, 0.5, 0.75, and 1.0.

b. Integrate the spline over [0, 1], and compare the result to f(! cos n x d x = 0.

c. Use the derivatives of the spline to approximate /'(0.5) and /"(0.5), and compare these ap-
proximations to the actual values.

8. a. Construct a natural cubic spline to approximate /(x) = e~x by using the values given by /(x)

atx = 0, 0.25, 0.75, and 1.0.

b. Integrate the spline over [0, 1], and compare the result to f Q
]

e ~x d x = 1- 1/e.

c. Use the derivatives of the spline to approximate /'(0.5) and /"(0.5), and compare the approxi-
mations to the actual values.

9. Repeat Exercise 7, constructing instead the clamped cubic spline with /'(0) = /'(1) = 0.

10. Repeat Exercise 8, constructing instead the clamped cubic spline with /'(0) = -1, /'(1) = -e~* .
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9 8 C H A P T E R Interpolation and Polynomial Approximation

11. A natural cubic spline S on [0, 2] is defined by

S ( x) =

12.

13.

14.

SoCO = 1 4* 2x — x3, if 0 < x < 1,

S, (x) = a + b{ x - 1) + c(x - l )2 + d ( x - l)3, if 1 < x < 2.

Find a, b,c,and d.
A clamped cubic spline s for a function / is defined on [1, 3] by

s( x )
_ ( s0( x ) = 3

\si ( x ) = a
= 3(x - 1) + 2(x - l)2 - (x - l)3, if 1 < x < 2,

+ b(x - 2) + c(x - 2)2 + d ( x - 2 )\ if 2 < x < 3.

Given /'(1) = /'(3), find a, b, c, and d .
A natural cubic spline S is defined by

S( x ) =
So(x) = 1 + B( x - 1)- D(x - l)3, if 1 < x < 2,

St ( x ) = l + b( x - 2 ) -\( x - 2 )2 + d( x - 2 )\ if 2 < x < 3.

If S interpolates the data (1, 1), (2, 1), and (3.0), find B. D, b, and d .
A clamped cubic spline s for a function / is defined by

s ( x )
5o(x) = 1 + Bx + 2x 2 - 2x\ if 0 < x < 1,

5, (x) = 1 + b( x - 1)- 4(x - l)2 + 7(x - l )3, if 1 < x < 2.

Find /'(0) and /'(2).
15. Suppose that /(x) is a polynomial of degree 3. Show that /(x ) is its own clamped cubic spline but

that it cannot be its own natural cubic spline.

16. Suppose the data {x, , /(x,)) , lie on a straight line. What can be said about the natural and clamped

cubic splines for the function /? [Hint: Take a cue from the results of Exercises 1 and 2.]

17. The data in the following table give the population of the United States for the years 1960 to 2010

and were considered in Exercise 16 of Section 3.2 and Exercise 6 of Section 3.3.

Year 1960 1970 1980 1990 2000 2010

Population (thousands) 179,323 203,302 226,542 249,633 281,442 307,746

a. Find a natural cubic spline agreeing with these data, and use the spline to predict the population
in the years 1950, 1975, and 2020.

b. Compare your approximations with those previously obtained. If you had to make a choice,

which interpolation procedure would you choose?

18. A car traveling along a straight road is clocked at a number of points. The data from the observations

are given in the following table, where the time is in seconds, the distance is in feet, and the speed is
in feet per second.

Time 0 3 5 8 13

Distance 0 225 383 623 993

Speed 75 77 80 74 72

a. Use a clamped cubic spline to predict the position of the car and its speed when t = 10 s.

b. Use the derivative of the spline to determine whether the car ever exceeds a 55-mi/h speed limit
on the road; if so, what is the first time the car exceeds this speed?

c. What is the predicted maximum speed for the car?

19. The 2011 Kentucky Derby was won by a horse named Animal Kingdom (at 20:1 odds) in a time of

2:02.04 (2 minutes and 2.04 seconds) for the 1 ^ -mile race. Times at the quarter-mile, half-mile, and

mile poles were 0:24.26, 0:59.68, and 1:47.95.
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3.6 Parametric Curves 99

a. Use these values together with the starting time to construct a natural cubic spline for Animal
Kingdom’s race.

b. Use the spline to predict the time at the three-quarter-mile pole, and compare this to the actual

time of 1:24.40.

c. Use the spline to approximate Animal Kingdom’s speed at the finish line.

20. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter

moth (Operophtera bromata L, Geometridae ) larvae that extensively damage these trees in certain

years.The following table lists the average weight of two samples of larvae at times in the first 28 days
after birth. The first sample was reared on young oak leaves, whereas the second sample was reared

on mature leaves from the same tree.

a. Use a natural cubic spline to approximate the average weight curve for each sample.

b. Find an approximate maximum average weight for each sample by determining the maximum

of the spline.

Day 0 6 10 13 17 20 28

Sample 1 average
weight (mg)

6.67 17.33 42.67 37.33 30.10 29.31 28.74

Sample 2 average
weight (mg)

6.67 16.11 18.89 15.00 10.56 9.44 8.89

3.6 Parametric Curves

None of the techniques we have developed can be used to generate curves of the form shown
in Figure 3.14, because this curve cannot be expressed as a function of one coordinate
variable in terms of the other. In this section we will sec how to represent general curves by
using a parameter to express both the *- and y-coordinatc variables. This technique can be

extended to represent general curves and surfaces in space.

Figure 3.14
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