Systems of Nonlinear Equations

10.1 Introduction

A large part of the material in this book has involved the solution of systems of equations.
Even so, tothis point the methods have been appropriate only for systems of linear equations,
equations in the variables xy, x3, ... , x, of the form

apxi +apxs+ o+ Ginxn = by

fori =1, 2,...,n. If you have wondered why we have not considered more general
systems of equations, the reason is simple. It is much harder to approximate the solutions
to a system of general, or nonlinear, equations.

Solving a system of nonlinear equations is a problem that is avoided when possible,
customarily by approximating the nonlinear system by a system of linear equations. When
this is unsatisfactory, the problem must be tackled directly. The most straightforward method
of approach is to adapt the methods from Chapter 2 that approximate the solutions of a single
nonlinear equation in one variable to apply when the single-variable problem is replaced
by a vector problem that incorporates all the variables.

The principal tool in Chapter 2 was Newton's method, a technique that is generally
quadratically convergent once a sufficiently accurate starting value is found. This is the
first technique we modify to solve systems of nonlinear equations. Newton's method, as
modified for systems of equations, is quite costly to apply, so, in Section 10.3, we describe
how a modified Secant method can be used to obtain approximations more easily, although
with a loss of the extremely rapid convergence that Newton’s method provides.

Section 10.4 describes the method of Steepest Descent. This technique is only linearly
convergent, but it does not require the accurate starting approximations needed for more
rapidly-converging techniques. It is often used to find a good initial approximation for
Newton’s method or one of its modifications.

InSection 10.5, we give an introduction to continuation methods, which use a parameter
to move from a problem with an easily determined solution to the solution of the original
nonlinear problem.

A system of nonlinear equations has the form

f.(x..xz.... .x,.}=0.

f?_(xllxilnl X)) =0,

Jalx1, %2, 00, X} =0,

where each function f; can be thought of as mapping a vector X = (xy, x2, ... ,x,)" of
the n-dimensional space R" into the real line R. A geometric representation of a nonlinear
system when n = 2 is given in Figure 10.1.
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414 CHAPTER 10 = Systems of Nonlinear Equations

Figure 10.1

z = faxy x3)
z= filx, x;)

filx, %) =0 and folx, &) =0
X

A general system of n nonlinear equations in n unknowns can be alternatively repre-
sented by defining a function F, mapping R" into R", by

F(xy, x2, ..., X0) = (filxr, 22, . .o, %), J2(X1, X2, - oo v Xa)soe o s o OB 22, .. L 1))

If vector notation is used to represent the variables x|, x;, ... , x,, the nonlinear system
assumes the form

F(x) =0.

The functions fi, fa, ..., f, are the coordinate functions of F.

Example 1 Place the 3 x 3 nonlinear system

1
3x; — cos(xaxa) — 5 0,

x} —81(x; + 0.1 +sinx; + 1.06 = 0,
-3

10
e "2 4 20x3 + =0

in the form F(x) = 0.
Solution Define the three coordinate functions f;, f>, and f3 from R3 to R as

1
Sfi(xy, x2, x3) = 3x; — cos(xxa) — 5
folxr, %2, %3) = x] — 81(x; +0.1)? + sin x5 + 1.06,
Or -3
3

1
falxy, X2, x3) = €7 + 20x3 +
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10.1  Introduction 415

Then define F from R? — R* by

F(x) =F(x), x3, x3)

= (fi(x1, x2, x3), falx1, x2, x3), f3(x1, X2, 13))'

1
= (3.:[ — cos(xaxs) — > xf — 81(xz +0.1)% + sinx; 4+ 1.06, e 2 + 20x;

10m —3\'
2 :

The original system is equivalent to F(x) = 0. u

Before discussing the solution of a system of nonlinear equations, we need some results
concerning continuity and differentiability of functions from E” into R and R" into R”.
These results parallel those given in Section 1.2 for a function from R into R.

Let f be a function defined on a set D € R" and mapping R" into R. The function f
has the limit L at xq, written

Jim f0 =L,

if, given any number ¢ > 0, a number § > 0 exists with the property that
If@)—Ll<e wheneverxe D and 0 < ||x — x| < 4.

Any convenient norm can be used to satisfy the condition in this definition. The specific
value of & will depend on the norm chosen, but the existence and value of the limit L is
independent of the norm.

The function f from R" into R is continuous at xo € D provided limy .5, f(x) exists
and is f(xg). In addition, f is continuous on a set D provided f is continuous at every
point of D. This is expressed by writing f € C(D).

We define the limit and continuity concepts for functions from R" into R" by considering
the coordinate functions from R" into R.

Let F be a function from D € R" into R" and suppose F has the representation

F®) = (fi®), L&), ..., LK),

where f; is a function from R" to R foreach i = 1, 2, .. .n. We define the limit of F from

R" to R” as

lim F(x) =L = (Ly, L3, ... , L)'

XXy
Continuity definitions for . . i
functions of n variables follow if and Oﬂ.l}" ].rl].[]lx_,xu ﬁ(x] = L,‘ foreachi = ]., 2, vy
from those for 2 single varighle The function F is continuous at X, € D provided limy_., F(x) exists and is F(x;). In
by replacing, where necessary, addition, F is continuous on the set D if F is continuous at each x in D.
absolute values by norms, These are the basic concepts we will need for the remainder of the chapter.
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416 CHAPTER 10 = Systems of Nonlinear Equations

‘ 10.2 Newton’s Method for Systems

Newton's method for approximating the solution p to the single nonlinear equation

F(x)=0
requires an initial approximation p; to p and generates a sequence defined by
S (Pe1)
= pi_1 — , fork=>1.
RSP o)
To modify Newton's method to find the vector solution p to the vector equation
F(x) =0,

we first need to determine an initial approximation vector p® . We must then decide how to

modify the single-variable Newton’s method to a vector function method that will have the
same convergence properties but not require division because this operation is undefined
for vectors. We also need to replace the derivative of f in the single-variable version of
Newton’s method with something that is appropriate for the vector function F.

The Jacobian Matrix

The derivative f'(x) of the single-variable function f(x) describes how the values of the
function change relative to changes in the independent variable x. The vector function F has
n different variables, xy, xa2, ... , x,, and n different component functions, fi, f2,..., fu.
each of which can change as any one of the variables change. The appropriate derivative
modification from the single-variable Newton’s method to the vector form must involve all
these n? possible changes, and the natural way to represent a2 items is by an n x n matrix.
Each change in a component function f; at x with respect to the change in the variable x;
is described by the partial derivative

af;

31)'

(x),

and the n x n matrix which replaces the derivative that occurs in the single-variable case is

[ afi afi afi . .7
E(ﬂ o (X) oo 'aTR{K)
a 3 a
ﬁ(x) ﬁ(x) — f2 (x)
J(X)= dx; ax2 0x,
afn 3fn afn
| E(’O E(") = (x) |

The matrix J (x) is called the Jacobian matrix and has a number of applications in analysis. It
might, in particular, be familiar due to its application in the multiple integration of a function
of several variables over a region that requires a change of variables to be performed.

Newton's method for systems replaces division by the derivative in the single-variable
case with multiplying by the inverse of the n x n Jacobian matrix in the vector situation.
As a consequence, Newton’s method for finding the solution p to the nonlinear system of
equations represented by the vector equation F(x) = 0 has the form

p® =p*? - NFEY), forkx1,

given the initial approximation p' to the solution p.
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10.2 Newton's Method for Systems 417

A weakness in Newton’s method for systems arises from the necessity of inverting
the matrix J(p*~") at each iteration. In practice, explicit computation of the inverse of
J(p%*~1) is avoided by performing the operation in a two-step manner. First, a vector y*—"
is found that will satisfy

J(P(k—l}}y(k—ll = _F(pi‘k—i))_

After this has been accomplished, the new approximation, p*’, is obtained by adding y*~!
to p%-—b,

Example 1 The nonlinear system
1
3).'| =} cos(xzxg) — i = 0,

x? — 81(x +0.1)% +sinxs + 1.06 =0,

10r -3

g "2 4+ 20x3 + 0

has the approximate solution (0.5, 0, —0.52359877)". Apply Newton's method to this prob-
lem with p@ = (0.1,0.1, —0.1)".

Solution Define

F(xy, x2, %3) = (f1(x1, %2, x3), falx1, %2, %3), falx1, X2, %)),

where
1

Ji(x1, x2, x3) = 3x; — cos(xax3) — 5

flxr, x2, x3) = xF — 81(xz + 0.1)% +sinx; + 1.06,
and

10w -3
falxy, x2, X3) = 772 4 2013 + ==
The Jacobian matrix J(x) for this system is
3 X3 Siﬂxzx; X2 Si.nxz).'3
J(xy, 20, %3) = 2x; —162(x> +0.1) €OS X3
—xze % —xje % 20

For p® = (0.1,0.1, —0.1)" we have
F(p'™) = (—0.199995, —2.269833417, 8.462025346)"

and
3 0.999833334 x 10~* 09.999833334 x 10~
Jp?) = 0.2 —-32.4 0.9950041653
—0.09900498337  —0.09900498337 20

Solving the linear system J (p©®)y® = —F(p?) gives

0.3998696728 0.4998696728
¥y = | —0.08053315147 | and p® =p©@ +y©® = | 0.01946684853 |.
—0.4215204718 —0.5215204718
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418 CHAPTER 10 = Systems of Nonlinear Equations

Continuing fork = 2,3, ..., we have

k) (k—1) (k—1)
P Py byl
LN (k1) (k=1)
Py | = (P2 + |7
(3] (k—1) (k—1)
3 3 3
where
—
J’E 1)
k-1 (k=1) _(k=1) (k—lJ “lp(pk1 k=D k=D
}'?(, ' = (J(P P P )) (Pl P2 Py )
{k=1)
3

At the kth step, the linear system J (p*~)y*~1 = —F(p"*~") must be solved, where

(k=13 *k=1)_(k—1) _(k—1) 1) _(k—1)
3 py sinp; U py py sinpy Up;
= k-1 k-1 k-1
Jphy = 2pY —162(py " +0.1) cos pi i
== (k=1) (k=1 e (k=1 _(k=1)
_—-pg‘ Ve=p k2 —p e R 20
r (k=1)
R
e ~1
y(* 1}‘: J"'g‘ ) ]
(k=1)
L¥3
and
(k—1) k—1) (k=1
3py " —cospy Vpy TV — 4

F* )y = [(p¥ ") - 81(pf" +0.1)" +sin p¥" + 1.06| .

{* 0 ER n
4 20 pU: 3] + 11]!r—

The results using this iterative procedure are shown in Table 10.1. n
Table10.1 Pilh pé&; P;&J p® — pt-] .

0 0.1000000000 0.1000000000 —0.1000000000

1 0.4998696728 0.0194668485 —0.5215204718 04215204718

2 0.5000142403 0.0015885914 —0.5235569638 1.788 % 1072

3 0.5000000113 00000124448 —0.5235984500 1.576 x 107*

4 0.5000000000 8.516x 1071 —0.5235987755 1.244 % 1073

5 0.5000000000 —-1.375x 107" —0.5235987756 8.654 x 1071°

The previous example illustrates that Newton's method can converge very rapidly ence
an approximation is obtained that is near the true solution. However, it is not always easy
to determine starting values that will lead to a solution, and the method is computationally
expensive. In the next section, we consider a method for overcoming the latter weakness.
Good starting values can usually be found by the method discussed in Section 10.4.
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10.2 Newton's Method for Systems 419

EXERCISE SET 10.2

1. Give an example of a function F : R* — [? that is continuous at each point of R* except at (1, 0).
2. Give an example of a function F : R — R* that is continuous at each point of R except at (1, 2, 3).
3. Use Newton’s method with p'” = 0 to compute p'? for each of the following nonlinear systems.
1
a. 413—201; +ZI§+B=U,

%xlx§+ 2, — Sx,+8=0.

b. sin(dmx;x;) — 22, —x; =0,
dr -1 35 3
(e™ — &) +dex; — 2ex; =0.
4x
5. d xi+x =37=0,
C. 3X] COs(xax3) 2 =10, X — Izz ==
4x} — 625x2 +2x; — 1 =0, xi+x;4+x— 3=0.
e 4 Q0xs + 10”3_ - =0.

4.  UseNewton's methed to find a solution to the following nonlinear systems in the given domain. Iterate
until [p* — p* V] < 107%,

a. 3xi—x2 =0, b. In(x} + xzz) —sin{x;x;) = In2 +Inm,
Inxi—x) —1=0. €7 4 cos(xixz) = 0.
Use p® = (1, 1)". Use p'® = (2,2)".
e X +aixa—xx+6=0, d. 6x; — 2cos(xx:) — 1 =0,
"'“:"""Iﬁ:“' 9x; + /% + sinxs + 1.06+09 =0,
. g —2ux; =4, 60x; + 3 %% + 10 —3 =0.
L ]
Uscp ) = (—I. =2, l) ] Use P{m = (0‘ n. G)r

5.  The nonlinear system

-z +20=0,
2, +x2— 6=0.

has four solutions. They are near (—5, —4)', (2, —1)', (0.5, 2)', and (-2, 3)". Use these points as
initial approximations for Newton’s method and iterate until [[p® — p* V|l < 107, Do the results
justify using the stated points as initial approximations?

6.  The nonlinear system

26 =304 x-4=0,
2+ x;—x+4=0,
i+ xf+xi—-4=0

has a solution near (—0.5, —1.5, 1.5)".

a. Usethispointasaninitial approximation for Newton's method anditerate until [ p® —p* -Vl <
109,

Solve the first two equations for x,and x; in terms of x,.

Substitute the results of (b) into the third equation to obtain a quadratic equation in x;.

Solve the quadratic equation in (c) by the quadratic formula.

Of the solutions in (a) and (d), which is closer to the initial approximation (—0.5, —1.5, 1.5)'?

g B0
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420 CHAPTER 10 = Systems of Nonlinear Equations

7.  The nonlinear system

|
3x; —cos(xpx;) — 5= 0,
2 21
x; —625x; — 2 =0,
10r —
em 420+ 22 =3 g

has a singular Jacobian matrix at the solution. Apply Newton's method with p¥ = (1, 1 — 1). Note
that convergence may be slow or may not occur within a reasonable number of iterations.

8.  The nonlinear system

411 — x3 4 X3 = 214,

=X + 3wz — 2x3 = X324,

X — 2 4+ 3x3 = 23%4,
x+axl+ai=1

has six solutions.
a.  Show that if (x;, x5, x3, x4)" is a solution, then (—x;, —x;, —x3, x;)" is a solution.
b.  Use Newton's method three times to approximate all solutions. Iterate until [[p®— p*~V||_ <
1072, Use the initial vectors (L, 1, 1, 1)’, (1,0,0,0)", and (1, —1, 1, —1)".
9. Let A be an n x n matrix and F be the function from R" to R" defined by F(x) = Ax. What is the
Jacobian matrix of F?
10. In Exercise 6 of Section 5.7, we considered the problem of predicting the population of two species

that compete for the same food supply. In the problem, we made the assumption that the populations
could be predicted by solving the system of equations

‘%(r) = x1(¢) (4 — 0.0003x, (1) - 0.0004x,(1))

%(r) = x(1) 2 - 0.0002x,(r) — 0.0001x(1)).

In this exercise, we would like to consider the problem of determining equilibrium populations of
the two species. The mathematical criteria that must be satisfied in order for the populations to be at
equilibrium is that, simultaneously,

dx; dx;
E(f)—ﬂ and I(ﬂ_o'

This occurs when the first species is extinct and the second species has a population of 20,000 or
when the second species is extinct and the first species has a population of 13,333. Can an equilibrium
oceur in any other situation?

11.  The amount of pressure required to sink a large, heavy object in a soft homogeneous soil that lies
above a hard base soil can be predicted by the amount of pressure required to sink smaller objects
in the same soil. Specifically, the amount of pressure p required to sink a circular plate of radius r a
distance d in the soft soil, where the hard base soil lies a distance D > d below the surface, can be
approximated by an equation of the form

P = ket +kar,
where ki, k2, and ks are constants, with k> > 0, depending on d and the consistency of the soil but

not on the radius of the plate.
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10.3 Quasi-Newton Methods an

a.  Find the values of k;, k;, and k; if we assume that a plate of radius 1 in. requires a pressure of
10 Ib/in.? to sink 1 ft in a muddy field, a plate of radius 2 in. requires a pressure of 12 Ib/in.” to
sink 1 ft, and a plate of radius 3 in. requires a pressure of 15 Ib/in.” to sink this distance (assuming
that the mud is more than 1 ft deep).

b.  Use your calculations from (a) to predict the minimal size of circular plate that would be required
to sustain a load of 500 Ib on this field with sinkage of less than 1 ft.

- 10.3 Quasi-Newton Methods

A significant weakness of Newton's method for solving systems of nonlinear equations
is the requirement that, at each iteration, a Jacobian matrix be computed and an n x n
linear system solved that involves this matrix. To illustrate the magnitude of this weakness,
consider the amount of computation associated with one iteration of Newton's method.
The Jacobian matrix associated with a system of n nonlinear equations written in the form
F(x) = 0 reguires that the n? partial derivatives of the n component functions of F be
determined and evaluated. In most situations, the exact evaluation of the partial derivatives
is inconvenient, and in many applications it is impossible. This difficulty can generally be
overcome by using finite-difference approximations to the partial derivatives. For example,

8} txy s LLE RO = i)
axk h

where h is small in absolute value and e; is the vector whose only nonzeroentry is a 1 in
the kth coordinate.

This approximation, however, still requires that at least n® scalar functional evalua-
tions be performed to approximate the Jacobian matrix and does not decrease the amount of
calculation, in general O (n?), required for solving the linear system involving this approx-
imate Jacobian. The total computational effort for just one iteration of Newton’s method
is, consequently, at least n® + n scalar functional evaluations (n° for the evaluation of the
Jacobian matrix and n for the evaluation of F) together with O(n 3y arithmetic operations to
solve the linear system. This amount of computational effort can be prohibitive except for
relatively small values of n and easily-evaluated scalar functions.

In this section, we consider a generalization of the Secant method to systems of non-
linear equations; in particular, a technique known as Broyden’s method (see [Broy]). The
method requires only n scalar functional evaluations per iteration and also reduces the
number of arithmetic calculations to O (n®). It belongs to a class of methods known as
least-change secant updates that produce algorithms called quasi-Newton. These methods
replace the Jacobian matrix in Newton’s method with an approximation matrix that is up-
dated at each iteration. The disadvantage to the method is that the quadratic convergence
of Newton's method is lost. It is replaced by superlinear convergence, which implies that

. Ip —pll _
i»oo [Ip —p|

where p denotes the solution to F(x) = 0, and p'” and p"*"’ are consecutive approximations
to p. In most applications, the reduction to superlinear convergence is a more than acceptable
trade-off for the decrease in the amount of computation.

An additional disadvantage of quasi-Newton methods is that, unlike Newton's method,
they are not self-correcting. Newton's method, for example, will generally correct for round-
off error with successive iterations, but unless special safeguards are incorporated, Broyden’s
method will not.
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422 CHAPTER 10 = Systems of Nonlinear Equations

To describe Broyden’s method, suppose that an initial approximation p'™ is given to
the solution p of F(x) = 0. We calculate the next approximation p‘*' in the same manner as
Newton’s method, or, if it is inconvenient to determine J (p©’) exactly, we can use difference
equations to approximate the partial derivatives. To compute p‘®), however, we depart from
Newton’s method and examine the Secant method for a single nonlinear equation. The
Secant method differs from Newton’s method because it uses

’ (p1) — f(po)
Fipy w LY = @0
P1—Po
instead of f'(p;). For nonlinear systems, p*) — p® is a vector, and the corresponding

quotient is undefined. However, the method proceeds similarly in that we replace the matrix
J(p'") in Newton’s method by a matrix A; with the property that

A" - p@) = F) —Fp®).

Any nonzero vector in R” can be written as the sum of a multiple of p" — p© and a
multiple of a vector orthogonal to p*"’ — p'®. So, to uniquely define the matrix A;, we need
to specify how it acts on vectors orthogonal to p(" — p(,

No information is available about the change in F in a direction orthogonal to p*) —p©,
so we simply require that no change occurs when defining A,;. That is,

Aiz=J@)z whenever (pV —pP)yz=0.

Thus any vector orthogonal to p™*) — p@ is unaffected by the update from J(p'), which
was used to compute p'*), to A;, which is used in the determination of p®..
These conditions uniquely define A, (see Exercise 8) as
[F(pm) e F(pm)) = _;(pm))(pm = p(m)]
Ip® —p@13

It is this matrix that is used in place of J(p'?) to determine p®:

A =J@")+ @ -p®. oy

p@ =p® — AT'FE™M).

Once p has been determined, the method can be repeated to determine p®, with A,
used in place of Ay = J(p?’) and with p® and p'" in place of p'¥’ and p'”, respectively.
To simplify the notation we introduce the variables

si=p” —p""" and y; =F@")-F@"").

Then, once p) has been determined, p“+" can be computed by
FY) - FE“-)] - Ai_ (" - p1)
lIp®@ — pti-12
Yi— A8,

Isiid

Ai= A+ (p® — ptly

= Ai_|+

and
p(H—]) Ei p(l') o A:—[F(pﬁ))_

If the method is performed as outlined, the number of scalar functional evaluations is
reduced from n?+ n to n (those required for evaluating F(p"))), but the method still requires
O(n?) calculations to solve the associated n x n linear system

Aisis = —F@").
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103 Quasi-Newton Methods 423

Employing the method in this form would not be justified because of the reduction to
superlinear convergence from the quadratic convergence of Newton's method. However, a
significant improvement can be incorporated by employing a matrix-inversion formula.

Sherman-Morrison Formula

Sherman-Morrison Formula
If A is a nonsingular matrix and x and y are vectors with y'A~'x # —1, then A + xy’
is nonsingular and

A_IXJ"A_I

T MUY B Loy
(Atay) = a 1+yA-'x

This formula permits A;"' to be computed directly from A;”';, eliminating the need
for a matrix inversion with each iteration. This computation involves only matrix-vector
multiplication at each step and therefore requires only O (n?) arithmetic calculations.

By letting A = A;_, X = (¥ — Ai-18:)/si |]%1 and y = s;, the Sherman-Morrison

formula implies that
ety (T T
Ai_l = (Al—l + us{)

fis: 13
1 (¥ — Aiisi )
5 2B ( | ||snf§_1—) oA
== 1 (¥ —Aias
L+8AL | = —
”sf"2
— A= (Al iy —si)siAT
U sill3 + AT s — llsil3
s (si —AF—'|Yi}SEAF—1t_

ALY

The calculation of A; is bypassed, as is the necessity of solving the linear system.

Example 1 Use Broyden’s method with p® = (0.1, 0.1, —0.1)' to approximate the solution to the
nonlinear system

3).’| —_ cos(x;x;) -— % = {],

x7 — 81(xz +0.1)% +sinx3 + 1.06 = 0,

10r -3

e 4-20xy + 0.

Solution This system was solved by Newton's method in Example 1 of Section 10.2. The
Jacobian matrix for this system is

3 X3 sin XaXs X2 sin XaX3
Jx), 2, 0)=| 2x —162(x2+0.1)  cosx;
—Xxye 122 —x e 5152 20
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424 CHAPTER 10 = Systems of Nonlinear Equations

Let p© = (0.1, 0.1, —0.1)" and

F(x), x2, x3) = (f1(x1, %2, %3), folx1, %2, %3), falx1, X2, x3))",

where
1
Sfilxy, x2, x3) = 3x; — cos(xax3) — 5
folxy, x2, x3) = x2 — 81 (x2 + 0.1)% + sin x3 + 1.06,
and
10 — 3
falxy, X2, x3) = 75172 4+ 2003 + I3 A
For p® = (0.1, 0.1, —0.1)" we have
—1.199950
F(p©) = |-2.269833|.
8.462025
This implies that
Ag=J (@™
3 9999833 x 10~*  —9.999833 x 10~*
= 0.2 —-32.4 0.9950042
—9.900498 x 1072 —9.900498 x 102 20

For this first iteration, we need to find the inverse of (J(p'®)). However, for subsequent
iterations, matrix inversion is not necessary. We have

= ) (i} -1
Azt =12, 22,2

0.3333332 1.023852 x 10~ 1.615701 x 1073
= [2.108607 x 10~* —3,086883 x 10~2 1.535836 x 10|,
1.660520 x 103  —1.527577 x 10~% 5.000768 x 102

So
0.4998697
pill = p(B]' —-AE'F{pm]) = | 1.946685 x 1072 I
—0.5215205
—3.394465 x 10~*]
FeW)=| -03443879 |,
3.188238 x 1072 |
[ 1.199611
yi= F(p(”] - F(p(o}) = | 1.925445 |,
| -8.430143
0.3998697
s; = | —8.053315 x 1072 ],
—0.4215204
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103 Quasi-Newton Methods 425

st Ay 'y = 0.3424604,

AT' =451+ 51— Ay'y)siAg']

. B, I(
0.3424604
0.3333781 1.11050 x 105 8.967344 x 10-5

= |—2.021270 x 1073 —3.094849 x 10~2 2.196906 x 10~3|,
1.022214 x 1073 —1.650709 x 10~* 5.010986 x 102

and

0.4999863
p? =p® — AT'F(p™) = [8.737833 x 1073 |.
—0.5231746

Additional iterations are listed in Table 10.2. The 5th iteration of Broyden’s method is
slightly less accurate than was the 4th iteration of Newton's method given in the example

at the end of the preceding section. L]
Table 10.2 E pgh pl;) pg‘” IIp® — p-1jj,

0 0.1000000 0.1000000 —0.1000000

1 0.4998697 1.946685 x 1072 —0.5215205 5.93 % 107!

2 0.4999864 8.737839 x 107* —0.5231746 1.0856 x 1072

3 0.5000066 8.672736 x 107* —0.5235723 7.8806 x 1077

4 0.5000003 3.952827 x 1073 —0.5235977 8.2817 x 10°*

5 0.5000000 1.934342 x 1077 —0.5235988 3.9351 x 107*

EXERCISE SET 103
1.  Use Broyden's method with p'”’ = 0 to compute p® for each of the following nonlinear systems.
a. 4xf--20.r;+ix§+8=0,

lx;l.t:l—l— le— 5X2+8=0<

2
b. sin(drx;x;) — 2, — 1, =0,
4 —1
( :::rr )(el"' — &) 4 dex? — 2ex, = 0.
c. 3x, — cos(x2x3) — % =0,

4x? — 625x2 +2x, — 1 =0,

e " 4 200y + %(10}1’ -3)=0.

d xl+x —-37=0,
x, —x3 - 5=0,
X+ a+x— 3=0.
2.  Use Broyden's method to approximate solutions to the nonlinear systems in Exercise 1 using the
following initial approximations p” until |p®* — p%*~||,. < 1075
a. (0,0 b, (0,0) ¢ 1,11 d  2.1,-1)

Copyright 342 Cengage Leurning. AT Rights Reserved. May ron be copied, seanned, oe doplicaed. in whols of in par. Due v electronle rlghts, some tird pary contens may be suppressed from the cBook andior eChagrerds). Editorlal review has
deemed S Ry supprEssed content dees ool maxtlaly affoa the overll leaming expericnce. Cengage Loaming reserves the ripht i remove additinnal contee & any 1time f subrseguent rights restrictons rogquire [k



426 CHAPTER 10 = Systems of Nonlinear Equations

3.  Use Broyden’s method to find a solution 1o the following nonlinear systems, iterating until [|[p* —
P41 < 1076,

a. 3.‘1‘: - x;j =0
Inxi-x—1=0
Use p” = (1, 1)".
b. In(x? + x%) —sin(x;x;) =In2 + I
" % 4 cos(xx;) =0
Use plﬂ] = (2. 2)1"

e x4xin—xnx+6=0
e +et—x3;=0
X% = 2I1.‘I.'3 =4

Use p™ = (-1, =2, 1),

d. 6x; — 2cos(xyx;) — 1 =0
Ox + \/x7 +sinx; + 1.06+0.9 =0
60x; 4+ 3e~n% 4+ 10r —3=0
Use p' = (0,0, 0.
4. The nonlinear system

3z, — cos(xax:) — % =0,

1
x7 = 625x] = =0

1
€% +20x; + 2 (10m —3) =0

has a singular Jacobian matrix at the solution. Apply Broyden’s method with p® = (1, 1 — 1)’. Note
that convergence may be slow or may not occur within a reasonable number of iterations.
5.  The nonlinear system

dx; — 1+ =212,

=Xy + 3x: — 2x3 = XaXs,
x —2I2+313=13.I<.
2+ g+ x5=1

has six solutions, and, as shown in Exercise 8 of Section 10.2, (—x;, —x3, —x3, x;) is a solution
whenever (x;, xz, X3, x4) is a solution. Use Broyden’s method to approximate these solutions. Iterate
until [[p® - p="||_ < 10-5. Use the initial vectors (1, 1, 1, 1)", (1,0, 0,0)", and (1, =1, 1, =1)".

6. Show thatif 0 # y € R" and z € R", then z = 2, + 2., where

f

Yz
llvli3

L= ¥y

is parallel to y and 2, = z — £, is orthogonal to y.
7. Show that if z is orthogonal to p''! — p', then for A, defined in Eq. (10.1) we have A; = J(p).
8, Let

[F(pm) —Fip™) — J(p®)(p" — p(m)] (p" — py
llp™ — p® )3 =

A =Je") +

a. Show that A;(p'V — p®) = F(p") — F(p).
b. Show that A,z = J(p'")z whenever (p'" — p™@)z = 0.
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104 The Steepest Descent Method 427

9.  Itcanbeshownthatif A~' existsandx,y € R", then (A+xy') ' existsif andonly if y' A~'x £ —1.Use
this result to verify the Sherman-Morrison formula: If A~ exists and ¥'A~'x # —1, then (A +xy') !
exists, and

A'lxy'A"

A gt P
W4y 14+yA'x

‘ 10.4 The Steepest Descent Method

The name for the Steepest The advantage of the Newton and quasi-Newton methods for solving systems of nonlinear

Descent method follows fromthe  equations is their speed of convergence once a sufficiently accurate approximation is known.

three-dimensional application of A weakness of these methods is that an accurate initial approximation to the solution is

pointing in: the aspest needed to ensure convergence. The method of Steepest Descent will generally converge

SORERRSIdmo0e: only linearly to the solution, but it is global in nature, that is, nearly any starting value will
give convergence. As a consequence, it is often used to find sufficiently accurate starting
approximations for the Newton-based techniques.

The method of Steepest Descent determines a local minimum for a multivariable func-
tion of the form g: R" — RR. The method is valuable quite apart from providing starting
values for solving nonlinear systems, but we will consider only this application.

The connection between the minimization of a function from R”" to R and the solution
of a system of nonlinear equations 1is due to the fact that a system of the form

)‘](x.,xz,... ,x,,} =0,

i, X2, 000 s X0} =0,

fﬂ{xl 2 X2aeun, x,,) =0,
hasa solution at X = (x;, Xy, ... , %,)' precisely when the function g from R" to R defined
by

e T TRBRE 5 0 1 N )

=1

has the minimal value zero.
The method of Steepest Descent for finding a local minimum for an arbitrary function
g from R" into R can be intuitively described as follows:

e Evaluate g at an initial approximation p© = (p\”, p\, ... , p@)r.
& Determine a direction from p'?’ that results in a decrease in the value of g.

® Move an appropriate amount in this direction and call the new value p.

® Repeat the steps with p® replaced by p'”.

The Gradient of a Function

Before describing how to choose the correct direction and the appropriate distance to move
in this direction, we need to review some results from calculus. The Extreme Value Theorem
implies that a differentiable single-variable function can have a relative minimum within
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428 CHAPTER 10 = Systems of Nonlinear Equations

The root of gradient comes from  the interval only when the derivative is zero. To extend this result to multivariable functions,
the Latin word gradi, meaning  we need the following definition.

“to walk", In this sense, the . Ten s T4
R T If g : R" — R, we define the gradientof g at x = (x1, x2, ... , %), Vg(x), by

which it "walks uphill”. 38 33 dg !
Vg(x) = (Ex; (x), % (®)isay 5%, (2)) e

The gradient for a multivariable function is analogous to the derivative of a single
variable function in the sense that a differentiable multivariable function can have a relative
minimum at x only when the gradient at x is the zero vector.

The gradient has another important property connected with the minimization of mul-
tivariable functions. Suppose v = (vy, v2, ..., v,)' is a vector in R" with ||v|; = 1. The
directional derivative of g at x in the direction of v is defined by

.l S
Dg(e) = fim 5 (sx-+ i) —g @1 =¥ - V@ =3 o, o ®

The directional derivative of g at x in the direction of v measures the change in the value of
the function g relative to the change in the variable in the direction of v.

A standard result from the calculus of multivariable functions states that the direction
that produces the maximum increase for the directional derivative occurs when v is chosen
in the direction of Vg(x), provided that Vg(x) s 0. So the maximum decrease will be in
the direction of —Vg(x).

e The direction of greatest decrease in the value of g atx is the direction given by —Vg(x).

See Figure 10.2 for an illustration when g is a function of two variables.

Figure 10.2

= S(Xq.xﬂ'r_::.._ .

_—

(), x5, 8(x,, x3))
\\j Steepest Descent direction
[}

]
]
= T
e x= G

The objective is to reduce g(x) to its minimal value of zero, so given the initial approx-
imation p'”, we choose

p" =p? —ave@?) (102)

for some constant o > 0.
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104 The Steepest Descent Method 429

The problem now reduces to choosing « so that g(p"?) will be significantly less than
2(p™). To determine an appropriate choice for the value @, we consider the single-variable
function

h(@) = g™ — aVg(p“)).

The value of  that minimizes h is the value needed for p™ = p© — aVg (™).

Finding a minimal value for  directly would require differentiating # and then solving
a root-finding problem to determine the critical points of h. This procedure is generally too
costly. Instead, we choose three numbers @y < @y < o that, we hope, are close to where
the minimum value of k(a) occurs. Then we construct the quadratic polynomial P(x) that
interpolates k at oy, or2, and 3. We define & in [ay, @] so that P (&) is aminimum in [a;, 3]
and use P (&) to approximate the minimal value of A(x). Then @ is used to determine the
new iterate for approximating the minimal value of g:

pfu = ptﬂ) = &vg(p{ﬂ)J_

Since g(p'") is available, we first choose @; = 0 to minimize the computation, Next a
number a5 is found with () < h(a;). (Since ) does not minimize /i, such a number a-
does exist.) Finally, a; is chosen to be a3 /2.

The minimum value & of P(x) on [a;, 3] occurs either at the only critical point of P
or at the right endpoint a3 because, by assumption, P(a3) = h(as) < h(a;) = P(ay). The
critical point is easily determined because P (x) is a quadratic polynomial.

Program STPDC103 applies the method of Steepest Descent to approximate the min-
imal value of g(x). To begin each iteration, the value 0 is assigned to o, and the value 1 is
assigned to a3. If h(es) = h(e), then successive divisions of a3 by 2 are performed and
the value of a3 is reassigned until h(as) < h(e;).

To employ the method to approximate the solution to the system

Jilmys Xas i %) =0,

fz{xllx?.a ey xn} = 0,
fn(xllxﬁ‘ seay xn} = D\
we simply replace the function g with 3°/_, f2.

Example 1 Use the Steepest Descent method with p® = (0,0, 0)' to find a reasonable starting ap-
proximation to the solution of the nonlinear system

1
Jilx, %2, x3) = 3x; — co8(xpx3) — - =0,

2
falx1, %2, %3) = xF — 81(x, 4 0.1)% + sinxs + 1.06 = 0,

10m -3

falxi, X2, x3) = €752 - 2003 + 0.
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Solution Let g(xy, x3, x3) = [fi(x1, %2, x3)1* + [fa(x1, x2, %3)]* + [f(x1, x2, %3)]%. Then
Vg Ger, 22, %3) m Vg () = (2f: ® i(x] +250 22 ) +2A®); ﬁ ®,

zfl(x) (x)+2fzKX) (x)+2f3(xJ—(X),

2fy CX)iEx) +2f@ f' (K) +2f (Ir)ﬁ (x))

= 2J(x)'F(x).
For p» = (0, 0, 0)°, we have
g(P?) = £1(0,0,0* + £2(0,0,0)* + £3(0,0,0)

2 2
— (—;) + (—81(0.01) + 1.06)% + (?) = 111.975,

and
20 = |Ve(@P) |2 = [|2J(0)'F(0)[|; = 419.554.
Let

- zlvg(ptm) = (—0.0214514, —0.0193062, 0.999583)".
0

With @; =0, we have g; = g(p'? — a,2) = g(p?) = 111.975. We arbitrarily let a3 = 1
so that

g3 = g(@"” — a37) = 93.5649.
Because g3 < g, we accept a3 and set o = ar3/2 = 0.5. Evaluating g at P(U} — @,z gives
= g(p"” — oyz) = 2.53557.

We now find the quadratic polynomial that interpolates the data (0, 111.975),
(1, 93.5649), and (0.5, 2.53557). It is most convenient to use Newton’s forward divided-
difference interpolating polynomial for this purpose, which has the form

Pla) = g1 + o + haala — o).
This interpolates
8@ —avg(®@™) = 2@ —an)
atoy =0, @y = 0.5, and a3 = 1 as follows:

a;=0, g =111975,

G5 s 05, g=253557, Ayt Bl 012078
oy —ay
B —
ax=1, g3=93.5649, hy=52"582 _ 182059, 3= h2=h _ 400937,
oy — a2 a3 — O
This gives

P(a) = 111.975 — 218.878a + 400.937a(a — 0.5) = 400.937a’ — 419.346a + 111.975
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104 The Steepest Descent Method 43

P'(er) = 801.874a — 419.346
and P'(a) = 0 when @ = oy = 0.522959. Since
g(pwJ —ogz) = 2.32762
is smaller than g; and g3, we set
p! = p©@ — oz = p'” — 0.522959z = (0.0112182, 0.0100964, —0.522741)"
and
g2(p") = 2.32762.

Table 10.3 contains the remainder of the results. A true solutionis p = (0.5, 0, —0.5235988)',
so p® would likely be adequate as an initial approximation for Newton’s method or
Broyden’s method. One of these quicker converging techniques would be appropriate
at this stage because 70 iterations of the Steepest Descent method are required to find

[p® — plls < 0.01. L]
Table103 P pe p 2(0®. p®, p)

2 0.137860 —0.205453 —0.522059 1.27406

3 0.266959 0.00551102 —0.558494 1.06813

4 0.272734 —0.00811751 —0.522006 0.468309

5 0.308689 =0.0204026 —0.533112 0.381087

6 0.314308 —0.0147046 —0.520923 0.318837

7 0.324267 —0.00852549 —0.528431 0.287024

EXERCISE SET 104

1.  Use the method of Steepest Descent to approximate a solution of the following nonlinear systems,
iterating until |p* — p* Y|l < 0.05.

a. 4xf—20x;+}‘x§+8=0

1
£x1x§+ 2x — Sx248=0
b.  3xf-x} =0
Inat—a)—1=0
e ]n(xf + x%} —sin(x;x2) =In2 + Inr
e 4 cos(xix) =0
d. Si.l'l(“i"l'.t;xz) - 21'2 - = 0

(4—”—*—‘) (2 — &) 4 dexd — 2em =0

2. Use the results in Exercise 1 and Newton's method to approximate the solutions of the nonlinear
systems in Exercise 1, iterating until [p* — p*~ [, < 1075,
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432 CHAPTER 10 = Systems of Nonlinear Equations

K Use the method of Steepest Descent to approximate a solution of the following nonlinear systems,
iterating until [p*® — p*~"| < 0.05.

8. 15x+ x—- 4x=13 b. 10x; —2xi+x—2x3—-5=0
¥ 4+10x;— x=11 8xf +4x3 —-9=0
X; — 2513 =-22 812.‘3 +4=0

e xi4xix—xx;+6=0
et +e?—x3=0
Ig' - 2x1x3 =4
d. X +eos(xxx3) — 1 =0
(1 —x)'* 4+ 2, +0.05x2 —0.15x3 — 1 =0
—x; —0.1x3 +00lx; +x3 - 1 =0
4. Use the results of Exercise 3 and Newton’s method to approximate the sclutions of the nonlinear
systems in Exercise 3, iterating until |[p* — p*~" |, < 107%,
5. Use the method of Steepest Descent to approximate minima for the following functions, iterating
until [p% — p* |l < 0.005.
a.  glx;, x;) = cos(x; + x;) + sinx; + cos xz
b, g(x,x) = 100G} — x2)* + (1 — x1)?
& gl o) =x+2i 4+l - 2o+ 20 - 250 —x+2
d. g(xi, 2, %) =] +2x3 4+ 3x3 + 1.01
6. a. Show that the quadratic polynomial that interpolates the function

h(a@) = g(p” — aVg(p”))
at o = 0, oz, and o3 is

Pla) = g(p') + hia + hsa(a — o2)

where
p, = E@Y —2) — (@)
1 =
hy = g(p”‘“ —@:2) _g(pwj = ﬂ'g!)‘ and f; = i‘g ~h
o3 = Q2 (25

b.  Show that the only critical point of P occurs at oty = 0.5(eez — hy/ h3).

‘ L 105 Homotopy and Continuation Methods

Homotopy, or continuation, methods for nonlinear systems embed the problem to be solved
within a collection of problems. Specifically, to solve a problem of the form
F(x) =0,

which has the unknown solution p, we consider a family of problems described using a

parameter A that assumes values in [0, 1]. A problem with a known solution x(0) corresponds

to A = 0, and the problem with the unknown solution x(1) = p corresponds to A = 1.
Suppose x%(0) is an initial approximation to the solution p of F(x) = 0. Define

G:[0,1]xR" > R
by
G(A, x) = AF(x) + (1 — A) [F(x) — F(x(0))] = F(x) + (A — DF(x(0)).
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