
C H A P T E R

Systems of Nonlinear Equations

10.1 Introduction

A large part of the material in this book has involved the solution of systems of equations.
Even so, to this point the methods have been appropriateonly for systems of linearequations,

equations in the variables xi, x2,... , xn of the form

at\ X\ + ai2x2 + • • • + ainxn = b{

for i = 1, 2, ... , n. If you have wondered why we have not considered more general

systems of equations, the reason is simple. It is much harder to approximate the solutions

to a system of general, or nonlinear, equations.
Solving a system of nonlinear equations is a problem that is avoided when possible,

customarily by approximating the nonlinear system by a system of linear equations. When
this is unsatisfactory, the problem must be tackled directly.The most straightforward method

of approach is to adapt the methods from Chapter 2 that approximate the solutions of a single
nonlinear equation in one variable to apply when the single-variable problem is replaced

by a vector problem that incorporates all the variables.
The principal tool in Chapter 2 was Newton’s method, a technique that is generally

quadratically convergent once a sufficiently accurate starting value is found. This is the
first technique we modify to solve systems of nonlinear equations. Newton’s method, as
modified for systems of equations, is quite costly to apply, so, in Section 10.3, we describe

how a modified Secant method can be used to obtain approximations more easily, although

with a loss of the extremely rapid convergence that Newton’s method provides.
Section 10.4 describes the method of Steepest Descent. This technique is only linearly

convergent, but it docs not require the accurate starting approximations needed for more
rapidly-converging techniques. It is often used to find a good initial approximation for
Newton’s method or one of its modifications.

In Section 10.5, we give an introduction to continuation methods, which use a parameter

to move from a problem with an easily determined solution to the solution of the original
nonlinear problem.

A system of nonlinear equations has the form

/l (*l.*2. • • • , X n ) = 0,

MX\ , x2 , • • • 1 x„ ) = 0,

f n (X|» X 2 t ... 9 X f i ) — 0,

where each function f can be thought of as mapping a vector x = (xj, x2t ... , x„)1 of
the n-dimensional space R” into the real line R. A geometric representation of a nonlinear

system when n = 2 is given in Figure 10.1.
413
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414 CH A PTER 10 Systems of Nonlinear Equations

Figure 10.1

Z = Mxl, x2 )

z = /,(*„ *2)

I

*2

/I(XI, x2) = 0 and /2(xi* *2 ) - 0

*1

A general system of n nonlinear equations in n unknowns can be alternatively repre-
sented by defining a function F, mapping R" into R", by

F(*1.*2 X n ) = (/l0*1.*2 *„) M*\ *2 */> ) M* l , x **
))' •

If vector notation is used to represent the variables x\ , x2 ,... , xn % the nonlinear system

assumes the form

F(x) = 0.

The functions /1, /2, ... , /„ a r e t h e coordinate functions o f F.

Example 1 Place the 3 x 3 nonlinear system

1
- COS(*2*3)“ -

x 2 — 81(JC2 + 0.1)2 4- sin;t3 4- 1.06 = 0,

10;r — 3

3JCJ = 0,

e *1*2
_

j
_

20x3 4- = 0
3

in the form F(x) = 0.

Solution Define the three coordinate functions /1, /2, and /3 from R3 to R as

1
Mxi , x2 , xj) = 3A:1 — cos(x2X3)-

fiixuX 2 % xi)= x ] - 81(JC2 4- 0.1)2 + sin*3 4- 1.06,

107T — 3
Mxux2, A:3) = e X' X 2 4- 20A:3 4-

3
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41510.1 Introduction

Then define F from R3 — R3 by

F(x) = F(jr, , JT2, x3)

= (/l (*i. x2 ,*3).h( x \ , x2 ,x3), f3( x,, x2 ,x3))'

= ( 3*1 - cos(*2*3) - L x
10

r1)'
] - 81(JC2 + 0.1)2 -I- sin JC3 + 1.06, e’*1*2 + 20x3

The original system is equivalent to F(x) = 0.

Before discussing the solution of a system of nonlinear equations, we need some results

concerning continuity and differentiability of functions from R" into R and Rn into Rn.
These results parallel those given in Section 1.2 for a function from R into R.

Let / be a function defined on a set D c R" and mapping R” into R.The function /
has the limit L at Xo, written

lim /(x) = L ,
X-**U

if, given any number e > 0, a number 8 > 0 exists with the property that

|/ (x) - L\ < e whenever x e D and 0 < ||x — XQ|| < 8.

Any convenient norm can be used to satisfy the condition in this definition. The specific

value of 8 will depend on the norm chosen, but the existence and value of the limit L is
independent of the norm.

The function / from R" into R is continuous at xo D provided limx-»xo /(x) exists
and is /(x0). In addition, / is continuous on a set D provided / is continuous at every

point of D.This is expressed by writing / e C ( D ).
We define the limit and continuity concepts for functions from R” intoR" by considering

the coordinate functions from R" into R.
Let F be a function from D C R" into R” and suppose F has the representation

F(x) = (/i (x), /2(x) /„(x))' ,

where /, is a function from R" to R for each i = 1, 2, ...n.We define the limit of F from

R" to R" as

lim F(x) = L = (Li , L2,... , Ln )‘
Continuity definitions for

functions of n variables follow

from those for a single variable

by replacing, where necessary,

absolute values by norms.

if and only if lim*-̂ /) (x) = L, for each i = 1, 2, ... , n.
The function F is continuous at Xo G D provided lim

addition, F is continuous on the set D if F is continuous at each x in D .
These are the basic concepts we will need for the remainder of the chapter.

F(x) exists and is F(xo). InX-*-*o
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416 C H A P T E R 1 0 Systems of Nonlinear Equations

10.2 Newton's Method for Systems

Newton’s method for approximating the solution p to the single nonlinear equation

fix ) = 0

requires an initial approximation po to p and generates a sequence defined by

f ( P k -i )

f ( p k-i )’
for k > 1.Pk = Pk-1 -

To modify Newton’s method to find the vector solution p to the vector equation

F(x) = 0,

we first need to determine an initial approximation vector p(0)
. We must then decide how to

modify the single-variable Newton’s method to a vector function method that will have the

same convergence properties but not require division because this operation is undefined
for vectors. We also need to replace the derivative of / in the single-variable version of

Newton’s method with something that is appropriate for the vector function F.

The Jacobian Matrix

The derivative /'(*) of the single-variable function /(*) describes how the values of the

function change relative to changes in the independent variable x .The vector function F has
n different variables, x\ 9 *2 » • • • > xny and n different component functions, /i, /2, . . . , /n,

each of which can change as any one of the variables change. The appropriate derivative
modification from the single-variable Newton’s method to the vector form must involve all

these nl possible changes, and the natural way to represent n 2 items is by an n x n matrix.
Each change in a component function f at x with respect to the change in the variable xj

is described by the partial derivative

V
(x) ,

dxj

and the n x n matrix which replaces the derivative that occurs in the single-variable case is

d f i , v a/, a/.
(x) (x) • • • (x)

dxi dx2 dxn
a/2 a/2 a/2

(x) • • • 7̂ (X)(X)
dxi dx2 dxn

The matrix J (x) is called the Jacobian matrix and has a number of applications in analysis. It
might, in particular, be familiar due to its application in the multiple integration of a function
of several variables over a region that requires a change of variables to be performed.

Newton’s method for systems replaces division by the derivative in the single-variable

case with multiplying by the inverse of the n x n Jacobian matrix in the vector situation.
As a consequence, Newton’s method for finding the solution p to the nonlinear system of

equations represented by the vector equation F(x) = 0 has the form

P<*> = P
(*

_ , ) - Uip(*-I))rlF(P
(*-I>),

given the initial approximation pi m to the solution p.

^(x) ... 3 f
'^ (x)

dx2 dxn

for k > 1,
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41710.2 Newton's Method for Systems

A weakness in Newton’s method for systems arises from the necessity of inverting
the matrix J { p{*-

,
)) at each iteration. In practice, explicit computation of the inverse of

y(p(*-0) is avoided by performing the operation in a two-step manner. First, a vector y(*-
,)

is found that will satisfy
The program NWTSY101

implements Newton’s

method for systems of

nonlinear equations.

J(p<*-
,))y(*“

,) = —F(p(*-1 )).

After this has been accomplished, the new approximation, p(*\ is obtained by adding y (*
_,)

to p(A
_

I).

Example 1 The nonlinear system

1
3*1 - cos(*2*3)-

2

*f - 81(*2 + 0.1)2 + sin*3 + 1.06 = 0,

IOTT -3

= 0 ,

+ 20*3 + = 0
3

has the approximate solution (0.5, 0, -0.52359877)'. Apply Newton’s method to this prob-
lem with p(0) = (0.1, 0.1, -0.1)'.

Solution Define

F(*i,*2 » *3) = (/l (*l ,*2,*3), /2(*1.*2.*3), M*UX2 , Xi ) y ,

where

1
/l (*l ,*2,*3) = 3*1 - cos(*2*3) -

/2(*1,*2,*3) = x i - 81(*2 + o. l )2 + sin*3 + 1.06,

and

I O TT - 3
MXUX 2 ,*3) = e X

'
X2 + 20*3 +

3

The Jacobian matrix J ( x ) for this system is

3 *3 sin*2*3 *2 sin*2*3

—162(*2 -F 0.1) cos*3

-x,*2

7(*, •*2 » *3) = 2*.
20—x2e~x

'
X2 -x\e

For p 1 ) 1 = (0.1, 0.1,-0.1)' we have

F(p<0)) = (-0.199995,-2.269833417, 8.462025346)'

and

9.999833334 x 10“4 9.999833334 x 10“41
-32.4

3

J (p(0)) = 0.2 0.9950041653

-0.09900498337 -0.09900498337 20

Solving the linear system 7(p(0))y(0) = -F(p(0) ) gives

0.4998696728
0.01946684853
-0.5215204718

0.3998696728
-0.08053315147
-0.4215204718

(0)
_

and p( , ) = p(0) + y(0) =y

Copyright 2012 Cerifapc Learnin*. AI Rights Reversed May rot be copied. scanned.ocdedicated.» whole oe m pan. Doc 10 electronic rights.some third pony content may be suppreved rrom the eBook andtor cCh<xcn» l . Editorial review h*>

deemed Cut any suppressed content does not materialy alTcct the overall learning experience. Cenitape l.camop reserves the right 10 remove additional conceal at any time i i subseqjrni rights restrictions require It



418 C H A P T E R 10 Systems of Nonlinear Equations

Continuing for k = 2, 3, . . . , we have

(*)i (*-!)“ • (*-!)'

Pi P 1 ^1
(A ) (A- l) (*-l )+P 1 P i y i

(A ) (A-1) (A-l )

-P3 - LP3 L>3

where

- (A-n-
(A — 1) (A —1) (A —1) (A- l ) (A—1)\

* P3 ) *

(A- l )

i J { P l ’ P i ’ P iy i

(A-l )

^3

At the k\h step, the linear system J ( p i k ] ) ) y { k !) = —F(p(*
_ , )) must be solved, where

pt' ) Pr' ) pry
cos p<*-'>-162(pf *1)

+0.l)
,,(*- l ) „(*- l )

e
~ p

\
p

2

3
(A-l )

J (ptt-w 2p!) =
(A-l )

_
(*-!)

r P t X )e-p
'

-y ( k - i y

y?- l ) .
- (A- l)

(A- l )
20-Pi

y(A-D
_

and

3p“-°
F(p(*-'> ) = (p{*

_
l >) 2

-8l (p2*
-1 > + 0.1)2

+ sinpf
_

l > + 1.06

n
(A- l ) (A- l )

^
„

e~P \ P2 + 20/?3

The results using this iterative procedure are shown in Table 10.1 .

- cos pfr-V'M1

(A- l ) IO.T-3

Table 10.1
*

(A ) (A) (A )
llp(A) -p'

A-DlocP i P i p>

0 0.1000000000
0.4998696728

0.5000142403

0.5000000113
0.5000000000
0.5000000000

0.1000000000
0.0194668485

0.0015885914

0.0000124448
8.516 x 10-'°

-1.375 x 10"n

-0.1000000000

-0.5215204718
-0.5235569638
-0.5235984500

-0.5235987755
-0.5235987756

0.4215204718

1.788 x 10“2

1.576 x 10"3

1.244 x 105
8.654 x lO"10

1

2
3
4

5

The previous example illustrates that Newton’s method can converge very rapidly once

an approximation is obtained that is near the true solution. However, it is not always easy

to determine starting values that will lead to a solution, and the method is computationally

expensive. In the next section, we consider a method for overcoming the latter weakness.

Good starting values can usually be found by the method discussed in Section 10.4.
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41910.2 Newton's Method for Systems

E X E R C I S E S E T 10.2

Give an example of a function F:R2 — R: that is continuous at each point of R:except at (1, 0).

Give an example of a function F : R3 - R3 that is continuous at each point of R3 except at (1, 2, 3).
Use Newton’s method with p 0) = 0 to compute p for each of the following nonlinear systems.

1.
2.

3.
1

4x2 - 20x, + -*f + 8 = 0,

\.*\x\ + 2xi - 5X 2 + 8 = 0.

sin(47rx ,x2)- 2x2 — Xi = 0,

(e2* 1 — e ) + Aex; — 2ex\ = 0.

3x, - cos(x2x3)- ^ = 0,

Ax ]- 625xf + 2*2 - 1 = 0,

IOTT - 3

a.

b.

(^)
d. x ] + *2

*, - x\
*1 + *2 +*3 - 3 = 0.

- 37 = 0,

- 5 = 0,
c.

e-*l*2 + 20*3 + = 0.
3

4. Use Newton’s method to find a solution to the following nonlinear systems in the given domain. Iterate

until ||p(t ) - p(*
_

1 )|l 3o < 10-6.

3*? — *2 = 0,

3*i*J — *
3 — 1 = 0.

Use p(0) = (1, l)1.

b. ln(xf +*
2) - sin(*!*2) = In 2 + lnrr,

ex'
~*2 + cos(*i*2> = 0.

Use p(0) = (2, 2)'.

a.

C. X ] +*f*2 — *1*3 + 6 = 0,

e*' + e*' -*3 = 0,

x; — 2*1*3 = 4.
Use p(0) = (—1, — 2, 1)'.

The nonlinear system

6*! — 2 cos(*2*3) — 1 = 0,

9*2 + y/ x ] + sin*3 + 1.06 + 0.9 = 0,

60*3 + 3e
_

JI|Jt2 + 107r — 3 = 0.
Use p(0) = (0, 0, 0)'.

d.

5.

*f -*2 + 2*2 = 0,

2*, + xf - 6 = 0.

has four solutions. They are near (—5,-4)', (2, — 1)', (0.5, 2)', and (—2, 3)'. Use these points as

initial approximations for Newton’s method and iterate until ||p(4 ) - p k-, )||x < 10'6. Do the results
justify using the stated points as initial approximations?

The nonlinear system6.

2x\ — 3*2 + *3 — 4 = 0,

2*i + *2 — *3 + 4 = 0,

x ] + *|+ x\- 4 = 0.

has a solution near (—0.5, — 1.5, 1.5)'.
a. Use this pointasan initial approximation for Newton’s method and iterate until llp^— plk

_ ,)|loc <

io-6.

b. Solve the first two equations for X \ and *3 in terms of *2.
c. Substitute the results of (b) into the third equation to obtain a quadratic equation in *2.

d. Solve the quadratic equation in (c) by the quadratic formula.

e. Of the solutions in (a) and (d), which is closer to the initial approximation (-0.5,-1.5, 1.5)'?
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420 C H A P T E R 1 0 Systems of Nonlinear Equations

7. The nonlinear system

l
- COS(*2X3) ~ - = 0,

x? - 625*f -\ = °.
IOTT - 3

3*,

e~* 1*2 + 20*3 + = 0
3

has a singular Jacobian matrix at the solution. Apply Newton’s method with p*0) = (1, 1 — 1)'. Note
that convergence may be slow or may not occur within a reasonable number of iterations.

The nonlinear system8.

4*1 -*2 +*3 = *1*4,

-*1 + 3*2 - 2*3 = *2*4,

*1 - 2*2 4- 3*3 = *3*4,

*!+*!+ *!= i

has six solutions.

a. Show that if (xj, x2, *3, x4)' is a solution, then (-*, ,-x2, -*3 , x4)' is a solution.

b. Use Newton’s method three times to approximate all solutions. Iterate until • p < ) — pA
_

l)|| . <
10 5. Use the initial vectors (1, 1, 1, 1)', (1, 0, 0, 0)', and (1,-1, 1,-1)'.

Let A be an n x n matrix and F be the function from R" to R" defined by F(x) = Ax. What is the

Jacobian matrix of F?

In Exercise 6 of Section 5.7, we considered the problem of predicting the population of two species
that compete for the same food supply. In the problem, we made the assumption that the populations
could be predicted by solving the system of equations

9.

10.

dx 1
(0 = x,(r) (4- 0.0003*i(r)- 0.0004*2(r»

dt

and

dx2
(0 = *2(0 (2- 0.0002*,(0- 0.0001*2(r)).

dt

In this exercise, we would like to consider the problem of determining equilibrium populations of
the two species. The mathematical criteria that must be satisfied in order for the populations to be at

equilibrium is that, simultaneously,

dx.
(0 = 0 and ^(/) = 0.

dt dt

This occurs when the first species is extinct and the second species has a population of 20,000 or
when the second species is extinct and the first species has a population of 13,333. Can an equilibrium
occur in any other situation?

The amount of pressure required to sink a large, heavy object in a soft homogeneous soil that lies

above a hard base soil can be predicted by the amount of pressure required to sink smaller objects

in the same soil. Specifically, the amount of pressure p required to sink a circular plate of radius r a
distance d in the soft soil, where the hard base soil lies a distance D > d below the surface, can be

approximated by an equation of the form

11.

p = kxek 2r + *3r,

where k\ , ki , and *3 are constants, with ki > 0, depending on d and the consistency of the soil but
not on the radius of the plate.
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42110.3 Quasi-Newton Methods

a. Find the values of k\ , k2, and &3 if we assume that a plate of radius 1 in. requires a pressure of
10 lb/in.2 to sink 1 ft in a muddy field, a plate of radius 2 in. requires a pressure of 12 lb/in.2 to

sink 1 ft, and a plate of radius 3 in. requires a pressure of 15 lb/in.2 to sink thisdistance (assuming
that the mud is more than 1 ft deep).

b. Use your calculations from (a) to predict the minimal size of circular plate that would be required

to sustain a load of 500 lb on this field with sinkage of less than 1 ft.

10.3 Quasi-Newton Methods

A significant weakness of Newton’s method for solving systems of nonlinear equations

is the requirement that, at each iteration, a Jacobian matrix be computed and an n x n
linear system solved that involves this matrix. To illustrate the magnitude of this weakness,

consider the amount of computation associated with one iteration of Newton’s method.
The Jacobian matrix associated with a system of n nonlinear equations written in the form
F(x) = 0 requires that the n2 partial derivatives of the n component functions of F be
determined and evaluated. In most situations, the exact evaluation of the partial derivatives

is inconvenient, and in many applications it is impossible. This difficulty can generally be
overcome by using finite-difference approximations to the partial derivatives. For example,

fj ( x+het ) - fj ( x )BJl (x) ^dxk h

where h is small in absolute value and e* is the vector whose only nonzero entry is a 1 in
the k\h coordinate.

This approximation, however, still requires that at least n 2 scalar functional evalua-
tions be performed to approximate the Jacobian matrix and docs not decrease the amount of
calculation, in general 0(n 3), required for solving the linear system involving this approx-
imate Jacobian. The total computational effort for just one iteration of Newton’s method

is, consequently, at least r + n scalar functional evaluations (n 2 for the evaluation of the

Jacobian matrix and n for the evaluation of F) together with 0(n 3) arithmetic operations to

solve the linear system. This amount of computational effort can be prohibitive except for
relatively small values of n and easily-evaluated scalar functions.

In this section, we consider a generalization of the Secant method to systems of non-

linear equations; in particular, a technique known as Broyden’s method (see [Broy]). The

method requires only n scalar functional evaluations per iteration and also reduces the

number of arithmetic calculations to 0 (n2 ). It belongs to a class of methods known as
least-change secant updates that produce algorithms called quasi-Newton. These methods
replace the Jacobian matrix in Newton’s method with an approximation matrix that is up-
dated at each iteration. The disadvantage to the method is that the quadratic convergence
of Newton’s method is lost. It is replaced by superlinear convergence, which implies that

llp(,>1)- pll

î *oo ||p(' > — pH

where p denotes the solution toF(x) = 0, and p 1 r > and p +11 areconsecutive approximations

to p . In most applications, the reduction to superlinearconvergence is a more than acceptable

trade-off for the decrease in the amount of computation.
An additional disadvantage of quasi-Newton methods is that, unlike Newton’s method,

they are not self-correcting. Newton’s method, for example, will generally correct for round-
off error with successive iterations, but unless special safeguards are incorporated, Broyden’s
method will not.

lim
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4 2 2 C H A P T E R 1 0 » Systems of Nonlinear Equations

To describe Broyden’s method, suppose that an initial approximation p(0) is given to

the solution p of F(x) = 0. We calculate the next approximation p(,) in the same manner as
Newton’s method, or, if it is inconvenient to determine J (p< 0)) exactly, we can use difference

equations to approximate the partial derivatives. To compute pl 2)
, however, we depart from

Newton’s method and examine the Secant method for a single nonlinear equation. The

Secant method differs from Newton’s method because it uses

f ( p i ) - f i po )
/'(Pi) * Pi - Po

instead of /'(pi ). For nonlinear systems, p" — p ( 0 ) is a vector, and the corresponding

quotient is undefined. However, the method proceeds similarly in that we replace the matrix

J (p 1!)) in Newton’s method by a matrix A\ with the property that

A , (pf > - p<°> ) = F(p<‘>) - F(p<°>).

Any nonzero vector in Rn can be written as the sum of a multiple of p 1 ) — p(0) and a
multiple of a vector orthogonal to p( l ) — p(0)

. So, to uniquely define the matrix Aj, we need
to specify how it acts on vectors orthogonal to p 1" — p(0).

No information is available about the change in F in a direction orthogonal to p11 } — p(0),

so we simply require that no change occurs when defining A\.That is,

A\ Z = 7 (p(0))z whenever (p( 1 ) — p(0))'z = 0.

Thus any vector orthogonal to p( I ) - p(0) is unaffected by the update from 7 (p( 0) ), which

was used to compute p", to A ], which is used in the determination of p ( 2) .

These conditions uniquely define A\ (see Exercise 8) as

[F(P< »)-F(p<°>)- y (p(0))(p"> - p(0) >]At = / (p<0)) + (p< » _
p(0))'. (10.1)

IIP(I) — P<0) lll
It is this matrix that is used in place of J (p

, l ) ) to determine p( 2):

p(2) = p( i ) _
A- » F(p( , )).

Once p(2) has been determined, the method can be repeated to determine p ( 3), with A\

used in place of Ao = ./ (p( 0 ) ) and with p( 2) and p" in place of p" and p(0), respectively.
To simplify the notation we introduce the variables

and y, = F(p(, )) - F ( pu~ l ) ) .

Then, once p" has been determined, p '+ l ) can be computed by

s, = p<'> - p"-1*

[F(ptf )) ~ F(pg-»)]- Aj- i (p(l^ - ptt-”) _
p(l

_
1)yA, = A,_

j +
iip(. ) -p(‘-» ni

— A, iS/
_

A , y<— A,_
i H s .

Us, ill
and

p0+» = p(O
_

Ar
,
F(p(.)).

If the method is performed as outlined, the number of scalar functional evaluations is

reduced fromn 2 + n ton (those required for evaluating F(p( , ) )), but the method still requires

0(n 3) calculations to solve the associated n x n linear system

AjSi+i = -F(p“’).
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42310.3 Quasi-Newton Methods

Employing the method in this form would not be justified because of the reduction to

superlinear convergence from the quadratic convergence of Newton’s method. However, a
significant improvement can be incorporated by employing a matrix-inversion formula.

Sherman-Morrison Formula

Sherman-Morrison Formula

If A is a nonsingular matrix and x and y are vectors with y'A * x ^ — 1, then A + xy'
is nonsingular and

- lA ~’xy'A

lTy'Â x
'(A + xy')-1 = A- 1

This formula permits A"1 to be computed directly from A- l eliminating the need
for a matrix inversion with each iteration . This computation involves only matrix-vector

multiplication at each step and therefore requires only 0 ( n2 ) arithmetic calculations.
By letting A = A , _

i , x = (y* - A,_ iSl )/||sl ||§, and y = s, , the Sherman-Morrison
formula implies that

»- i »

- l

( )y. - Aj.js,
A"1 siA,_ i +i

lls, II;

)( y,- - Ai_ ,s,-1 -1
S'A^i- i /- lMl- 1= A

i-1 “

( )y i - A^ S i
l + s'A. Ji

II Sill 2

( A-

^ y, - s, )s'A-1
1-1= A(

-J, -
||s, Hi -t- s'A.Jjy, -||s,|||

(s, - Viy. )»iA-1
1-1-1The program BROYM102

implements Broydcn’s

method.

= A i- l
sJA-

^y,

The calculation of A ,- is bypassed, as is the necessity of solving the linear system.

Example 1 Use Broyden’s method with p(0) = (0.1, 0.1 , -0.1)' to approximate the solution to the
nonlinear system

1
3*! - COS(*2*3) “ - = 0,

x 2 - 81(*2 + 0.1)2 + sinx3 + 1.06 = 0,

10TT - 3
e~x' X2 + 20X3 + = 0.

3

Solution This system was solved by Newton’s method in Example 1 of Section 10.2. The
Jacobian matrix for this system is

3 *3 smX2^3

162(JC2 + 0.1)
-x\X2

X 2 sm X2X3

COS*32x ,J ( x 1 , X2 , X3) =
20-or 1*2-x2e -xxe
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424 C H A P T E R 10 Systems of Nonlinear Equations

Let p(0) = (0.1, 0.1, —0.1)' and

F(*i.*2.*3) = (/i (-*1.*2.*3) 1 /2(^1.*2. -*3). M X U X 2 , x3))',

where

1
f ] ( x1, JC2, X3) = 3*i - cos(x2*3)-

2
»

/2(^ 1 » ^2.^3) = x ] - 81( 2̂ + 0.1 )2 + sinx3 + 1.06,

and

10TT - 3
*2.*3) = e~x

'
X2 + 20*3 +

3

Forp 0) = (0.1, 0.1,-0.1)' we have

"— 1.199950
F(p(0)) = -2.269833

8.462025

This implies that

A0 = y (p(0))

-9.999833 x 10"4‘

0.9950042
9.999833 x 10"4

-32.4
-9.900498 x 10"2

3
0.2

-9.900498 x 10"2 20

For this first iteration, we need to find the inverse of (./ (p(0))). However, for subsequent

iterations, matrix inversion is not necessary. We have

At' = j ( p?\p?\pfr'
0.3333332

= 2.108607 x lO"3

1.660520 x lO"3

1.615701 x lO"5'

1.535836 x lO’3

5.000768 x 10~2

1.023852 x 10"5

-3.086883 x 10"2

-1.527577 x lO”4

So

0.4998697
1.946685 x lO'2 ,

-0.5215205
p( l )

_
p(0)

_
^
-^(p^0)) =

-3.394465 x 10~4’

-0.3443879
3.188238 x 10~2

F(p(,)) =

1.199611
'

1.925445 ,

-8.430143
y, = F(p(1)) -F(p(0)

) =

0.3998697
-8.053315 x lO"2 ,

-0.4215204
s, =
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42510.3 Quasi-Newton Methods

s' Ao 'yi = 0.3424604,

V = V +
1

[(Sl -Vy.K>V]

1.11050 x 10-5

-3.094849 x 10“2

-1.650709 x 10-4

0.3424604

0.3333781

-2.021270 x 10"3

1.022214 x 10-3

8.967344 x 10~6‘

2.196906 x 10“3 ,
5.010986 x 10-2

and

0.4999863
8.737833 x 10"3

-0.5231746

(2) = p( i > - AriF(P
( i> ) =p

Additional iterations are listed in Table 10.2. The 5th iteration of Broyden’s method is
slightly less accurate than was the 4th iteration of Newton’s method given in the example

at the end of the preceding section.

Table 10.2 k
(*) (*> (A)

||p(A )
_

p(*-l)||2P1 Pi Pi

0 0.1000000
0.4998697
0.4999864

0.5000066
0.5000003
0.5000000

0.1000000

1.946685 x 10 2

8.737839 x 10"3

8.672736 x 10
3.952827 x 10 5

1.934342 x 10

-0.1000000

-0.5215205
-0.5231746
-0.5235723

-0.5235977
-0.5235988

- l1 5.93 x 10
1.0856 x 10"2

7.8806 x 10~ 3

8.2817 x 10 4

3.9351 x 10"5

2
43

4
-75

E X E R C I S E S E T 10.3

Use Broyden’s method with plD) = 0 to compute pl ? ) for each of the following nonlinear systems.1.

1
4xf - 20x [ -I- - x\+ 8 =

^*1*2 4* 2xt — 5X 2 4- 8 = 0.

sin(4;rxix2) — 2x2 — X\ = 0,

0,a.

b.

- e ) 4- 4ex\ — 2ex\ = 0.i

1
3*i - cos(x2*3) - - = °.

4*
2 _

625x2 4- 2*, - 1 = 0,

c.

1
e ~x' x* + 20*3 4- - ( IOTT - 3) = 0.

xf 4- *2

*, -*|
*, 4- *2 4- *3 - 3 = 0.

Use Broyden’s method to approximate solutions to the nonlinear systems in Exercise 1 using the
following initial approximations p

,u> until ||p ‘ 1 - pa-I)||00 < 10~6.
(1» 1» l)f

- 3 7 = 0,

- 5 = 0,

d.

2.

a. (0,0)' d. (2, i , - i yb. (0, 0)' c.
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426 C H A P T E R 10 Systems of Nonlinear Equations

Use Broyden’s method to find a solution to the following nonlinear systems, iterating until ||p(k) -

p̂ loo < lO"6.
3.

3x\- x; =0
3x\x; — x* — 1 = 0

Use p(0) = ( l , l )'.
ln(xf 4- x|) - sin( jci jr2) = In 2 4- In n

4. COS(JC, JC2) = 0

Use p(0) = (2, 2)'.

x ] + x\x2 - X { X y 4- 6 = 0

e* 1 +e*i - X ) = 0
x\ — 2x\X $ = 4

Use p(0) = (-1,-2, 1)'.

6*1 2 COS(*2*3)- 1 = 0

9*2 4- y/ xJ 4- sinx3 4- 1.06 4- 0.9 = 0

60x3 4- 3e~x' x* 4- IOTT - 3 = 0

Use p(0) = (0.0.0)'.
The nonlinear system

a.

b.

c.

d.

4.

1
- cos(x2x3)-

2

-625x|- i = 0.
+ 20*3 + * (10JT 3) = 0

has a singular Jacobian matrix at the solution. Apply Broyden’s method with p(0) = (1, 1- 1)'. Note

that convergence may be slow or may not occur within a reasonable number of iterations.
The nonlinear system

3*i = 0.

x?1

e~xxx
‘

5.

4xy - x2 + x$ = xxxA%

-*1 4- 3X2 ~ 2X3 = x2xA,
xx - 2x2 + 3X3 = X3X4,

x ] 4* x\ 4- x\= 1

has six solutions, and, as shown in Exercise 8 of Section 10.2, (—xu -x2 ,-x3, x4) is a solution
whenever (xlt x2, x3, x4) is a solution. Use Broyden’s method to approximate these solutions. Iterate

until ||p(t)- p -̂»||<J0
< 10'5. Use the initial vectors (1, 1, 1, 1)', (1, 0, 0, 0)', and (1,-1 , 1,-1)'.

Show that if 0 ^ y G R" and z G Rn , then z = 4- z2, where6.

t±- j
llylll

z, =

is parallel to y and z2 = z- Z| is orthogonal to y.
Show that if z is orthogonal to p( , ) — p < 0) , then for A\ defined in Eq. (10.1) we have A\ = y (p<0) ).7.

8. Let

[F(p(1)> - F(p<°> > - y(p<0,)(p( 1 ) - p(0) )] (P
( 1) - p(0)y

A , = y (p
,0>) + iipin

_
p<o > n|

a. Show that A , (p< l ) — p(0)) = F(p(,)) — F(p(0)).

b. Show that Al z = 7(p(0> )z whenever (p h - p(0> )'z = 0.
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42710.4 The Steepest Descent Method

It can beshown that if A
_

l existsand x , y R", then (A+xy')~ l exists if and only if y'A ~ 1 x ^ — l.Use
this result to verify the Sherman-Morrison formula: If A 1 exists and y'A 1 x ^ -1, then (A + xy ' )
exists, and

9.
-l

A'lxy'A

1 + y,A-1x
‘

-l

(A + xy') 1 = A 1

10.4 The Steepest Descent Method

The advantage of the Newton and quasi-Newton methods for solving systems of nonlinear

equations is their speed of convergence once a sufficiently accurate approximation is known.
A weakness of these methods is that an accurate initial approximation to the solution is
needed to ensure convergence. The method of Steepest Descent will generally converge
only linearly to the solution, but it is global in nature, that is, nearly any starting value will

give convergence. As a consequence, it is often used to find sufficiently accurate starting

approximations for the Newton-based techniques.
The method of Steepest Descent determines a local minimum for a multivariable func-

tion of the form g: R" - R. The method is valuable quite apart from providing starting
values for solving nonlinear systems, but we will consider only this application.

The connection between the minimization of a function from R" to R and the solution
of a system of nonlinear equations is due to the fact that a system of the form

/l (*l.*2 *< ) = 0,

/2(*l .*2 X„ ) = 0,

The name for the Steepest

Descent method follows from the

three-dimensional application of

pointing in the steepest

downward direction.

f n ( X\ , X 2 X n ) = 0,

has a solution at x = (JCJ ,*2, • • • . x„y precisely when the function g from R" to R defined

by

Xn ) = .*n)]2g ( x1,*2, .. • »

1-1

has the minimal value zero.
The method of Steepest Descent for finding a local minimum for an arbitrary function

g from R" into R can be intuitively described as follows:

• Evaluate g at an initial approximation p ()) = (pj0)
, p f\... , p<0))f.

• Determine a direction from p (0) that results in a decrease in the value of g.

• Move an appropriate amount in this direction and call the new value p
[ ).

• Repeat the steps with p(0) replaced by p11} .

The Gradient of a Function

Before describing how to choose the correct direction and the appropriate distance to move
in this direction, we need to review some results from calculus.The Extreme Value Theorem

implies that a differentiable single-variable function can have a relative minimum within
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428 C H A P T E R 10 Systems of Nonlinear Equations

The root of gradient comes from the interval only when the derivative is zero. To extend this result to multivariable functions,
the Latin word gradi,meaning

“to walk”. In this sense, the

gradient of a surface is the rate at

which it “walks uphill”.

we need the following definition.
If g : Rn -¥ R, we define the gradient of g at x = (*i , x2 , ... , Vg(x), by

v*(x) = (S(x)
’

The gradient for a multivariable function is analogous to the derivative of a single
variable function in the sense that a differentiable multivariable function can have a relative

minimum at x only when the gradient at x is the zero vector.
The gradient has another important property connected with the minimization of mul-

tivariable functions. Suppose v = (uj, V2 , ... , vnY is a vector in R” with ||v||2 = 1. The

directional derivative of g at x in the direction of v is defined by

S'd g
* “ ’ dx

Dvg ( x ) = lim i [ g ( x + h\) -g(x)] = v* Vg(x) =^ ^
x)*

d g

i= l

The directional derivative of g at x in the direction of v measures the change in the value of
the function g relative to the change in the variable in the direction of v.

A standard result from the calculus of multivariable functions states that the direction
that produces the maximum increase for the directional derivative occurs when v is chosen

in the direction of Vg(x), provided that Vg(x) ^ 0. So the maximum decrease will be in
the direction of — Vg (x).

• The direction of greatest decrease in the value of g at x is the direction given by -Vg (x) .

Sec Figure 10.2 for an illustration when g is a function of two variables.

Figure 10.2

z

The objective is to reduce g(x) to its minimal value of zero, so given the initial approx-
imation p(0), we choose

p ' D
_

p(0)
_

QfVgCp'0* ) (10.2)

for some constant a > 0.
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42910.4 The Steepest Descent Method

The problem now reduces to choosing or so that g(p ! 1 }) will be significantly less than

g(p(0)). To determine an appropriate choice for the value or, we consider the single-variable

function

*(«) = S(P<0) - aVg(p(0» )).

The value of a that minimizes h is the value needed for p = p(0) — aVg (p (0)).

Finding a minimal value for h directly would require differentiating h and then solving

a root-finding problem to determine the critical points of h.This procedure is generally too

costly. Instead, we choose three numbers a\ < 0*2 < «3 that, we hope, are close to where
the minimum value of h (a ) occurs. Then we construct the quadratic polynomial P ( x ) that

interpolates h at oq ,«2» and 0*3. We define a in [ ct\ , «3] so that P (a ) is a minimum in [a\, «3]

and use P (a ) to approximate the minimal value of h(a ).Then a is used to determine the

new iterate for approximating the minimal value of g:

(0) - aVg(p(0> ) .
(1)

P ' = p

Since g (p
, 0) ) is available, we first choose a\ = 0 to minimize the computation. Next a

number 0*3 is found with h {a3) < h(a\ ). (Since a\ does not minimize h, such a number «3

does exist.) Finally, «2 is chosen to be 0*3/2.
The minimum value a of P ( x ) on [aj, 0*3] occurs either at the only critical point of P

or at the right endpoint 0*3 because, by assumption, P ( ot ) ) = h (a3) < h(a\ ) = P ( ct\ ).The

critical point is easily determined because P ( x ) is a quadratic polynomial.
Program STPDC103 applies the method of Steepest Descent to approximate the min-

imal value of g (x). To begin each iteration, the value 0 is assigned to ot ] , and the value 1 is
assigned to 0*3. If /1(0*3) > /1(0*1 ), then successive divisions of 0*3 by 2 are performed and

the value of **3 is reassigned until /1(0*3) < /* (<*i )-
To employ the method to approximate the solution to the system

The program STPDC103

implements the Steepest

Descent method.

/i (xi, x2,... , X„ ) = 0,

/2(^1 » -*2 » • • • • xn ) =

/n (*l ,*2,... ,*n ) = 0,

we simply replace the function g with YH=\ J7 -

Example 1 Use the Steepest Descent method with pl 0) = (0, 0, 0)' to find a reasonable starting ap-
proximation to the solution of the nonlinear system

:
/l (Xj, X2,*3) = 3*!- COS(x2X3) ”

2 = 0
’

/2(*1 » *2,*3) = x\ - 81(X2 + 0.1) 2 -f sin*3 + 1.06 = 0,

10TT - 3
M*1,*2,*3) = e X l X2 + 20X3 + = 0.

3
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430 C H A P T E R 10 Systems of Nonlinear Equations

Solution Letg(xi, x2,x3) = [/i (x, , x2, x3)]2 + [/2U1, x2, x3)]2 + [/3U1,*2 » X3)]2.Then

= (2/, (X)^(X) + 2/2(X)^(X) + 2/3(X)^ (X),V«(JT1,^2,*3) = Vg (x)
3A:, 3AC,

3/, 3/2 3/3
2/, (x) (x) + 2/2(x) (x) + 2/3(x) (X).

3*2 3X2 dx2

(x) j3/i 3/2 3/3
2/1 (X) — (x) + 2/2(x) (x) + 2/3(X)

9X3 9x3 9x3

= 2J(x)'F(x).

For p 0 ) = (0, 0, 0)', we have

8 ( P
(0)) = /.(0, 0, 0)2 + /2(0t 0, 0)2 + /3(0, 0, 0)2

2

+ (-81(0.01) + 1.06)2 + (^ = 111.975,

and

Zo = l|Vg (p<0>)||2 = l|2J(0)'F(0)||2 = 419.554.

Let

1
z =-Vg(p(0> ) = (-0.0214514, —0.0193062, 0.999583)'.

zo

With ai = 0, we have gi = g (pl0) - a\Z ) = g (p < 0) ) = 111.975. We arbitrarily let a3 = 1
so that

(0) -a3z) = 93.5649.S3 = s(p

Because < g\ , we accept <*3 and set a2 = a3/2 = 0.5. Evaluating g at p(0) — a2z gives

82 = «(P<0) -a2z) = 2.53557.

We now find the quadratic polynomial that interpolates the data (0, 111.975),

(1, 93.5649), and (0.5, 2.53557). It is most convenient to use Newton’s forward divided-
difference interpolating polynomial for this purpose, which has the form

P {(* ) = Si + h\ct + h -sct {a - a2 ).

This interpolates

S(P
(0) -aVg (p( 0))) = g (plU ) -az)

at afi = 0, (*2 = 0.5, and a3 = 1 as follows:

«i = 0, Si = 111.975,

8 2 - 8 1
«2 = 0.5, g2 = 2.53557, /z , = = -218.878,

«2 «1

h2 - h\83 - 82
= 93.5649, h2 = = 182.059, h3 = = 400.937.«3 = 1,

«3 -«2 «3 -« i

This gives

P (a ) = 111.975- 218.878a + 400.937a (a -0.5) = 400.937a2 - 419.346a + 111.975
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43110.4 The Steepest Descent Method

so

P\a ) = 801.874a- 419.346

and P (a ) = 0 when a = oro = 0.522959. Since

g(p<0) -a0z ) = 2.32762

is smaller than g ] and #3, we set

p<'> = p<°> - a0z = p<0) - 0.522959Z = (0.0112182, 0.0100964,-0.522741)I

and

g ( p(,)) = 2.32762.

Table 10.3contains the remainderof theresults.A true solution is p = (0.5, 0,-0.5235988)',
so p ' 2) would likely be adequate as an initial approximation for Newton’s method or
Broyden’s method. One of these quicker converging techniques would be appropriate

at this stage because 70 iterations of the Steepest Descent method are required to find

llp(*> - Plloo < 0.01.

Table 10.3 k
_

(*)

P i P?>
_

<*>P )

2 0.137860
0.266959

0.272734
0.308689
0.314308

0.324267

-0.205453
0.00551102

-0.00811751

-0.0204026

-0.0147046
-0.00852549

-0.522059

-0.558494

-0.522006
-0.533112

-0.520923

-0.528431

1.27406
1.06813
0.468309
0.381087
0.318837

0.287024

3

4

5
6
7

EXERCISE SET 10.4

l. Use the method of Steepest Descent to approximate a solution of the following nonlinear systems,

iterating until ||plA ) — plt
_,

)||oc < 0.05.

1
Ax ] - 20x , + -xf + 8 = 0

5x2 + 8 = 0

a.
1
-x\x$ + 2xi -

3*?-4
3*,xf -*,3 - 1 = 0

c. ln (xf + x\) — sin(xiX2 > = In 2 + ln;r

e* i ~*2 + cos(xi*2) = 0

sin(47rxijc2) — 2JC2 x\ = 0

(e2*1 - e ) 4- Aex\- 2ex\ = 0

Use the results in Exercise 1 and Newton’s method to approximate the solutions of the nonlinear
systems in Exercise 1, iterating until ||p(A ) - p(i

_
l >||oc < 10~6.

b. = 0

d.

(TT)
2.
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432 CHAPTER 10 Systems of Nonlinear Equations

3. Use the method of Steepest Descent to approximate a solution of the following nonlinear systems,

iterating until \\ p( k ) - p(*
_

1)||oc < 0 05.

a. 15*i + *2 “ 4*3 = 13

*f + 10*2
_

*3 = 11
x\- 25*3 = —22

C. *^ -f x ]x2 — *1*3 + 6 = 0
exi +e** - x3 =0

x\ — 2*1*3 = 4

10*i — 2*|+*2 — 2*3 — 5 = 0

8*|+ 4*f -9 = 0

8*2*3 4" 4 = 0

b.

*i 4- cos(*i*2*3) - 1 = 0
(1 -*,),/4 +*2 + 0.05*3 - 0.15JC3 - 1 = 0

— x\ — 0.1*1 + 0.01*2 +*3 — 1 = 0

Use the results of Exercise 3 and Newton’s method to approximate the solutions of the nonlinear

systems in Exercise 3, iterating until ||p | A > — p
' *“

,)||00 < 10 6.

Use the method of Steepest Descent to approximate minima for the following functions, iterating
until flp(4) - pt*~,)||00 < 0.005.
a. g (xt , x2 ) = cos(x , 4- *2) 4- sin*, 4- cos*2

b. g (*i , *2) = 100(*f -*2)2 4- (1 -*i )
2

c. g (*i ,*2,*3) = *
2 + 2x\4- *2 - 2*,*2 + 2*i - 2.5*2 -*3 4- 2

d. g (*j , *2,*3) = *
4 4~ 2*

4 4" 3*
4 4" 1.01

a. Show that the quadratic polynomial that interpolates the function

h (a ) = s(p
,0) - aVg(p(0>»

d.

4.

5.

6.

at or = 0, a2, and a3 is

P(a ) = g(p(0)
) 4- h\a 4- /i 3or(a - or2)

where

g(p< 0) -a2z) - g (p 0) )
h

a2

g(p< 0> — a3z) — g(p<0) — ar2z) h2 - h i
, and A3 =h2 = a3 - a2

b. Show that the only critical point of P occurs at oro = 0.5(or2 — /11/ /13).

«3

— 10.5 Homotopy and Continuation Methods

Homotopy, or continuation, methods for nonlinear systems embed the problem to be solved
within a collection of problems. Specifically, to solve a problem of the form

F(x) = 0,

which has the unknown solution p, we consider a family of problems described using a
parameter k that assumes values in [0, 1]. A problem with a known solution x(0) corresponds
to k = 0, and the problem with the unknown solution x( l ) = p corresponds to k = 1.

Suppose x(0) is an initial approximation to the solution p of F(x) = 0. Define

G : [0, 1] x R" R"

by

G( k , x) = *F(x) 4- (1 - k ) [F(x) - F(x(0))] = F(x) 4- (k - l )F(x(0)).
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