C H A P T E R 6 Direct Methods forSolving Linear Systems 6.1 Introduction Systems ofequations areused torepresent physical problems thatinvolve theinteraction of various properties .The variables inthesystem represent theproperties being studied ,and theequations describe theinteraction between thevariables .The system iseasiest tostudy when theequations arealllinear .Often thenumber ofequations isthesame asthenumber ofvariables ,foronly inthiscase isitlikely thataunique solution willexist. Notallphysical problems canbereasonably represented using alinear system with the same number ofequations asunknowns ,butthesolutions tomany problems either have this form orcanbeapproximated bysuch asystem .Infact,thisisquite often theonly approach thatcangive quantitative information about aphysical problem . Inthischapter weconsider direct methods forapproximating thesolution ofasystem ofnlinear equations innunknowns .Adirect method isonethatgives theexact solution to thesystem ,ifitisassumed thatallcalculations canbeperformed without round -offenor effects .However ,wecannot generally avoid round -offerror andweneed toconsider quite carefully theroleoffinite-digit arithmetic error intheapproximation tothesolution tothe system ,andhow toarrange thecalculations tominimize itseffect . 6.2 Gaussian Elimination Ifyou have studied linear algebra ormatrix theory ,you probably have been introduced toGaussian elimination ,themost elementary method forsystematically determining the solution ofasystem oflinear equations .Variables areeliminated from theequations until oneequation involves only onevariable ,asecond equation involves only thatvariable and oneother,athird hasonly these twoandoneadditional ,andsoon.Thesolution isfound by solving forthevariable inthesingle equation ,using thistoreduce thesecond equation to onethatnowcontains asingle variable ,andsoon,until values forallthevariables arefound . Three operations arcpermitted onasystem ofequations E\,£2,   .£*. Operations onSystems ofEquations  Equation £,canbemultiplied byanynonzero constant A.,with theresulting equation used inplace of£,.This operation isdenoted (A.£,)-(£,).  Equation E}canbemultiplied byanyconstant A.,andadded toequation £,,with theresulting equation used inplace of£,-.This operation isdenoted (£;+A.£j)- (ft).  Equations E,andEjcanbetransposed inorder.This operation isdenoted (£,)<-* (Ej). 229 Copyright 2012 Cenjjayc Lcirrii /AIRjihuReserved May notbecopied Manned orduplicated towhole ortopan.Doctoelectronic rifhu.tome third party content nu>betupprcsied riom theeBook and/oreCh deemed thatanyvuppreoed content dee *,not i*uxtia:'.>affect theoverall Icamir .actpcncncc Ceityape Leaning roervev theright torerrx'ccadditional contort atanytime ifvubvcijjcni ngh<»restrictions require it.230 C H A P T E R 6 Direct Methods forSolving Linear Systems IllustrationByasequence oftheoperations justgiven ,alinear system canbetransformed toa more easily -solved linear system with thesame solutions .The sequence ofoperations is shown inthenext Illustration . The four equations Ey.*14-*2 4-3*4=4, Ey.2*i+*2-*34-*4= 1, Ey 3*,-*2-*34-2*4=-3, £4:-*14-2*24-3*3-*4=4, willbesolved for*j,*2,*3,and*4.Wefirstuseequation £1toeliminate theunknown X\ from equations £2,£3»and£4byperforming (£2— 2£j)-(£2),(£3— 3£j)— (£3), and(£4+£])-(£4).Forexample ,inthesecond equation (£2— 2£,)— (£2) produces (2*i+X2-*3+*4)-2(x\+x2+3*4)=1-2(4), which simplifies totheresult shown as£2in Et:*14-*2 4-3*4= 4, Ey -*2-*3-5*4=-7, Ey.-4*2-*u>1-O*II-15, Ey. 3*24-3*34-2*4= 8. Forsimplicity ,thenewequations arcagain labeled £1,£2,£3,and£4. Inthenewsystem ,£2isused toeliminate theunknown JC2from£3and£4byperforming (£3— 4£2)— (£3)and(£44-3£2)—(£4).This results in E\ix1+*2 4-3*4 £2:-*2-*3-5*4 £3: 3*3+13*4 £4: — 13*4 The system ofequations (6.2)isnow intriangular (orreduced )form andcanbe solved fortheunknowns byabackward -substitution process .Since £4implies *4=1, wecansolve £3for*3togive x3=*(13-13*4)= ^(13-13)=0. mJ mJ Continuing ,£2gives *2=— (“ 7+5*44-*3)=— (— 74-5+0)=2,4, “ 7, 13, -13.(6.2) and£1gives *i=4— 3*4— *2=4— 3— 2=— 1. The solution tosystem (6.2),andconsequently tosystem (6.1),istherefore *1=— 1, *2=2,*3=0,and*4=1. Copyright 2012 Cenfajc Learn in*.AIRights Reversed Mayr*xbecopied.scanned .o*implicated ,inwhole orinpar.Doctocjectronie rights.some third pur.ycontcir.may besupprc-xdrican theeBook and/orcChapccriM .Editorial review h*> deemed Cutany Mjppic-xdcontent docs nottnaxrUXy alTcct theoverall Icamir .itexperience .Ccagagc [.camonreserves theright 10remove additional eonteatatanytime ifsubsequent rights restrictions require It.6.2 Gaussian Elimination 231 Matrices and Vectors When performing thecalculations oftheIllustration ,wedidnotneed towrite outthefull equations ateach steportocarry thevariables X\,X29*3,andx4through thecalculations because they always remained inthesame column .The only variation from system to system occurred inthecoefficients oftheunknowns andinthevalues ontheright side of theequations .Forthisreason ,alinear system isoften replaced byamatrix ,arectangular array ofelements inwhich notonlyisthevalue ofanelement important ,butalsoitsposition inthearray.Thematrix contains alltheinformation about thesystem thatisnecessary to determine itssolution inacompact form. Thenotation forannxm(nbym)matrix will beacapital letter ,such asA,forthe matrix ,andlowercase letters with double subscripts ,such asairtorefer totheentry atthe intersection oftheithrowand jthcolumn ;thatis, A=[a y)=a\\ d]2 a2ld22a\m &2m O/il &n2** * Example 1Determine thesizeandrespective entries ofthematrix A2-1 7 3 10 Solution Thematrix hastworows andthree columns ,soitisofsize2x3.Itsentries are described byan=2,d\2=— l,ai3=7,021=3,d22=1,and 023=0. The1xnmatrix A=[an d\2 --d\n]iscalled ann-dimensional row vector ,and annx1matrix o11 «21A= 1 iscalled an/{-dimensional column vector .Usually theunnecessary subscript isomitted forvectors andaboldface lowercase letter isused fornotation .So, *1 *2x= .x". denotes acolumn vector ,andy=[yiy2   yn]denotes arow vector. Asystem ofnlinear equations inthenunknowns x\9*2»   .xnhastheform 011*1+al2x2+  +dlnxn-bu 021*1+022*2H b02nX„=b2. On1*1+0„ 2*2+**’+Onn^fl— bn. Copyright 2012 Cenfajc Learn in*.AIRights Reversed Mayr*xbecopied.scanned .ocimplicated ,inwhole orinpar.Doctocjectronie rights.some third pur.ycontent may besupplied ftem theeBook and/orcChaptcnM .Editorial review h*> deemed Cutanysuppressed content does nottnaxriaXy alTcct theoverall learning experience .Ccagagc [.cammureserves theright toremove additional eonteatatanytime ifsubsequent rights restrictions require It232 C H A P T E R 6 Direct Methods forSolving Linear Systems Annx{n4-1)matrix canbeused torepresent thislinear system byfirstconstructing ^=laij ]=«11«12'*’«ln'*t‘ «21«22 «2*and b=b2 «nl«n2* * *«nn .b». Augmented refers tothefactthat theright-hand side ofthesystem hasbeen included inthematrix .andthen combining these matrices toform theaugmented matrix : W,b]«11«12* **«ln b{ «21«22***«2n b2 I !  ania,,2    ann bn. where thevertical dotted linebefore thelastcolumn isused toseparate thecoefficients of theunknowns from thevalues ontheright-hand sideoftheequations . Repeating theoperations involved intheIllustration onpage 230 with thematrix notation results infirstconsidering theaugmented matrix : 1 1 0 3 4' 2 1-1 1 1 3-1-1 2-3-1 2 3-1 4 Performing theoperations (£2-2£,)-»(£2),(£3-3£I)-*(£3),and (£4+£,)-(£4) produces 1 1 0 3 4' 0-1-1-5-7 0-4-1-7-1 5 0 3 3 2 8 Then Atechnique similar toGaussian elimination firstappeared during theHandynasty inChina inthe textNine Chapters onthe Mathematical Art,which was written inapproximately 200 BCE.Joseph Louis Lagrange (1736-1813 )described a technique similar tothis procedure in1778 forthecase when thevalue ofeach equation is0.Gauss gave amore general description inTheoria Motus corporum coelestium sectionibus solem ambientium ,which described theleast squares technique heused in1801 to determine theorbit ofthedwarf planet Ceres .(£3-4£2)-(£3)and (£4+3£2) (£4), produces thefinal matrix 110 3 0-1-1-5 0 0 3 1 3 0 0 0 -1 34-7 1 3-1 3 This final matrix canbetransformed into itscorresponding linear system andsolutions for ,*2,*3,and*4obtained .The procedure involved inthisprocess iscalled Gaussian Elimination with Backward Substitution . Thegeneral Gaussian elimination procedure applied tothelinear system £i:tfn.xi4-a12*2+- - -+a\nXn=bu £2:«21*1+a22*2H h«2/i*n=bi, £« «nl*l"fa,j2*24"* * *4“ flnn^n— bfi, Copyright 2012 Cengagc Learn in*.AIRights Reversed May notbecopied ,canned ,ocduplicated .inwhole orinpar.Doctoelectronic rights.some third pur.ycontetr.may besupposed rrom theeBook and/oreChaptcnnl .Editorial review h*> deemed Cutanysuppressed content does nottnaxrUXy alTcct theoverall learning experience .('engage Learning reserves theright 10remove additional conteatatanytime ifsubsequent rights restrictions require IL6.2 Gaussian Elimination 233 ishandled inasimilar manner .First form theaugmented matrix A: an a\2   <*ln A=[A,b]=aiia22 <*2n  a2,n+l Qnl an2* **ann where Adenotes thematrix formed bythecoefficients andtheentries inthe (n+l)st column arethevalues ofb;thatis,al%n+,=b,foreach i=1,2,...,n. Suppose thatan#0.Toconvert theentries inthefirstcolumn ,below an,tozero,we perform theoperations (£*-mk,£,)-(£*)foreach k=2,3...,nforanappropriate multiplier mk\.Wefirst designate thediagonal element inthecolumn ,a,,asthepivot element .The multiplier forthek\hrow isdefined bymk\=ak\/an.Performing the operations (£*— I£i)-(£*)foreach k=2,3,...,neliminates (thatis,changes to zero)thecoefficient ofx\ineach ofthese rows: an a\2   a\n:b\ E2— rn2iEi— E2 011 012    Oin:b\ 021 022    &2n\b2Ei-mi\E\-£3 0 022** * <*2/1 &2 On1&n2* *’ann ;bn.£„ — mn\E\-£„ 0 On2* * * ann\bn Although theentries inrows 2,3,...,nareexpected tochange ,forease ofnotation ,we again denote theentry intheithrowandthejthcolumn byatj. Ifthepivot element 022#0,weform themultipliers mk2=ak2/a22andperform the operations (£*— m^Ei)— £*foreach k=3,...,nobtaining an 0012 022* * *a\n    a2nbi biE)-m32E2->£3an 00,2 022***a\n    a^br b2 0an2***ann KEn— mn2E2— £„ .0 0 ***ann K Wethen follow thissequential procedure fortherows i=3...,n— 1.Define themultiplier mki=aki/aaandperform theoperation (Ek-m kiEi )-(Ek) foreach k=i+1,i+2,...,n,provided thepivot element a„ isnonzero .This eliminates Xiineach rowbelow theithforallvalues ofi=1,2,...,n—1.Theresulting matrix has theform 0,i0,2  **0,n ai,n+i 0..q ^2  **fl2n a2,n+l l   .0 0 Onn an,n+im where ,except inthefirstrow,thevalues ofa,jarenotexpected toagree with those inthe original matrix A.Thematrix Arepresents alinear system with thesame solution setasthe original system ,thatis, a\\X\-f0,2*2H ha\n*n=01./J+1. <*22*2H 1-<*2nXn=02.«+!. &nnXrt=^n.n+1» Copyright 2012 CcniMfc Learn in*.AIR.(huReversed May rotbecopied.scanned .ocduplicated.»whole oempan.Doc loelectronic ttfht».some third pony content may besuppreved riom theeBook and/wcCh deemed Cutanysuppressed content dees notimtetlaly alTcct theoverall learning experience .Cenitapc [.cannon reserves theright Mremove additional conceal atanytime i!subseqjrni nghts restrictions require it234 C H A P T E R 6 Direct Methods forSolving Linear Systems Backward substitution canbeperformed onthissystem .Solving thenthequation for*„ gives ®n,n+l Xn=  Qnn Then solving the(n— l)stequation for jcn_iandusing theknown value forxnyields x n-1&n— l.n+l &n— l,nXn <*n-\,n-\ Continuing thisprocess ,weobtain Bj.n+1— (aiJ+lXj+lH bOj.nXn) anai,n+1^^j=i+\aijXj an Theprogram GAUSEL 61 implements Gaussian Elimination with Backward Substitution .foreach /=n— 1,n— 2,...,2,1. The procedure willfailifattheithstep thepivot element a„ -iszero ,forthen either themultipliers m*,=am/anarenotdefined (thisoccurs ifan=0forsome i deemed Cutanysuppressed cement does notmamlaXy alTcct theioera .1learning experience .('engage [.camonreserves theright 10remove additional eonteatatanytime ifsubsequent nghts restrictions require It6.2 Gaussian Elimination 235 oftheelements <232anda42forthefirstnonzero element .Since <232^0,theoperation (£2)**(£3)isperformed toobtain anew matrix. '1-1 2-1-8' 0 2-1 1 6 0 0-1-1-4 0 0 2 4 12 Since x2isalready eliminated from£3and£4,thecomputations continue with theoperation (£4+2£3)-(£4),giving A(4)='1-1 2-1-8‘ 0 2-1 1 6 0 0-1-1-4 0 0 0 2 4 Thematrix isnow converted back intoalinear system thathasasolution equivalent tothe solution oftheoriginal system andthebackward substitution isapplied : X4=t=2' 1-4-(-1M.*3= : =2, x2=-1 [6— x4— (-1)*3] 2=3, [~8—(—l)x4—2X3—(—l)x2]- = Todefine theinitial augmented matrix inMATLAB ,which wewillcall AA,weenter thematrix row byrow.Aspace isplaced between each entry inarow,andtherows inAA areseparated byacolon .So,forthematrix inExample 2wehave AA=[1-1 2-1-8;2-2 3-3-20;1 1 10-2;1-1434] MATLAB responds with 1-12-1-8 2-23-3-20 1 11 0-2 1-14 3 4 Toperform theoperation (Ej+m£,)— (£y)inMATLAB weusethecommand A A(j,:)=A A(j,:)+m*A A(i,:) The notation A A(k,l)refers toentry inthek\hrow and/thcolumn .The useof:in MATLAB refers tomultiplying anentire roworcolumn .Forexample ,multiplying thefcth rowbymisdone with m*A A(k,:).Similarly ,multiplying the/thcolumn bymwould be done with m*A A(:,1).Sothenext command subtracts twice thefirstrowofAAfrom the second row. A A(2,:)=A A(2,:)-2*A A(l,:) Copyright 2012 Cengagc Learn in*.AIRighto Reversed May n«becopied ,canned ,o*duplicated .inwhole orinpar.Doctocjectronie righto.some third pur.ycontent may besuppressed rrom theeBook and/oreChaptcnnl .Editorial review h*> deemed Cutanyvupprc"Cdcontent docs notmaterial yalTcct theover*!Ieamir .itexperience .Cenitape [.camon reserve!theright Mremove additional conceal atanytime i!subsequent rights restrictions require It.236 C H A P T E R 6 Direct Methods forSolving Linear Systems which gives 1-1 2-1-8 0 0 -1-1-4 1 1 1 0-2 1-1 4 3 4 Wethen subtract thefirstrowofAAfrom thethird row,followed bythesubtraction ofthe firstrowfrom thefourth rowwith AA(3,:)=AA(3,:)-AA(1,:) and AA(4,:)=A A(4,:)— A A(1,:) This gives '1-1 2-1-8' 0 0 -1-1-4A A~0 2-1 1 6 0 0 2 412 Thevariable x\hasnow been eliminated from therows corresponding tothesecond , third ,andfourth equations .Since ai2iszero,weneed tointerchange rows tomove anonzero entry toan.Tointerchange rows 2and3,westore row2inatemporary rowvector B,move row3torow2,andthen more thetemporary rowvector Btorow3.This isdone with B=A A(2,:) AA(2,:)=A A(3,:) AA(3,:)=B Theresult is AA=1-1 2-1-8 0 2-1 1 6 0 0-1-1-4 0 0 2 412 The final operation inGaussian elimination forthismatrix istoadd2times thethird row tothefourth rowwith AA(4,:)=A A(4,:)+2*AA(3,:) This produces 1-1 2-1-8 0 2-1 1 6 0 0 -1-1-4 0 0 0 2 4 Toperform thebackward substitution weneed todefine thevector xthatwillcontain the solution .Weinitialize avector xasthe0vector andwillreplace these entries asweprogress through thebackward substitution . x=[000 0] Copyright 2012 Cengagc Learn in*.AIRights Reversed Mayr*xbecopied.scanned .ocimplicated ,inwhole orinpar.Doctocjectronie rights.some third pur.ycontent may besupplied ftem theeBook and/orcChapccriM .Editorial review h*> deemed Cutany suppic-cdcontent does notmaxtUly alTcct theoverall learning experience .Ceagage [.camonreserves theright 10remove additional eonteatatanytime iivubvcyjcm nghtv rotrictionv require It6.2 Gaussian Elimination 237 Now wereplace the0inthefourth column ofxwith x(4)=AA(4,5)/AA(4,4) which gives Then x(3) gives x(2) givesx=0 0 0 2 (AA(3,5)-AA(3,4)*x(4))/AA(3,3) x=0 0 2 2 (AA(2,5)-(AA(2,3)*x(3)+AA(2,4)*x(4) ))/AA(2,2) x=0 3 2 2 and x(l)=(AA(1,5)-(AA(1,2)*x(2)+AA(l,3)*x(3)+AA(l,4)*x(4)))/AA(l,1) gives thefinal solution x=-7 3 2 2 which corresponds tox\=-7,X2=3,X3=2,andx4=2. Example 2illustrates what isdone ifoneofthepivot elements iszero.Iftheithpivot element iszero,theithcolumn ofthematrix issearched from theithrowdownward for thefirstnonzero entry ,andarowinterchange isperformed toobtain thenew matrix .Then theprocedure continues asbefore.Ifnononzero entry isfound theprocedure stops ,and thelinear system does nothave aunique solution .Itmight have nosolution oraninfinite number ofsolutions . Operation Counts The computations intheprogram areperformed using only one nx(n+1)array for storage .This isdone byreplacing ,ateach step,theprevious value ofa,jbythenewone.In addition ,themultipliers arestored inthelocations ofa*«known tohave zero values— that is,when i deemed Cutanyvuppicwed content dee>notmaterial yalTect theoverall Icamir .itexperience .C'crtitape Learn oprexxvei thertpltt 10renxwe additional conceal atanytime i itutoeqjroi npht »rotrictionc require It238 C H A P T E R 6 Direct Methods forSolving Linear Systems because ofthetime differential .The total number ofarithmetic operations depends onthe sizen,asfollows : Multiplications /divisions : Additions /subtractions :n3.2- /i3n2 3+2'3* 5n 6~* Forlarge n,thetotal number ofmultiplications anddivisions isapproximately n?/3,that is,0(H3),asisthetotal number ofadditions andsubtractions .The amount ofcomputation , andthetime required toperform it,increases with ninapproximate proportion ton3/3,as shown inTable 6.1. Table 6.1n Multiplications /Divisions Additions /Subtractions 3 17 11 10 430 375 50 44,150 42,875 100 343,300 338,250 E X E R C I S E S E T 6 . 2 l. Obtain asolution bygraphical methods ofthefollowing linear systems ,ifpossible . a.x\+2x2=3, X]— X2=0. c. x,+2X2=3, 2xi+4*2=6. e. x,+2X2=0, 2x,4-4X2=0. g.2xi+x2=-1, 4xi+2X2=-2, xi— 3x2=5.b.xi+2x2=0, X]- X2=0. d. xi+2X2=3, — 2xi-4X2=6. f.2x,+x2=-1, x,+x2=2, x,— 3X2=5. h.2xi4-X24-X3=1, 2xi+4X2-*3=-1. 2. UseGaussian elimination andtwo-digit rounding arithmetic tosolve thefollowing linear systems . Donotreorder theequations .(The exact solution toeach system isxi=1,X2=— 1,X3=3.) a.4x|— x24-x3=8, b.4xj4-x24-2x3=9, 2xi4-5x24-2x3=3, 2xi4-4x2— X3=-5, xi4-2x24-4x3=11. xi4-X2-3x3=-9. 3. UseGaussian elimination tosolve thefollowing linear systems ,ifpossible ,anddetermine whether rowinterchanges arenecessary : a. X|— x24-3x3=2, 3x,-3x2+x3=-1, *1+*2 =3. b.2xj— 1.5X24-3x3=1,-x, +2x3=3, 4xi-4.5X24-5x3=1. Copyright 2012 Cengagc Learn in*.AIRighto Rcicrved .May notbecopied.canned .orimplicated ,inwhole ormpart.Doctocjectronie rifhu.some third pur.ycontent may besupplied riom theeBook and/orcChapccriM .Editorial roiew h*> deemed Cutanysuppressed content does nottnaxrUXy alTcct theoverall Icamir .itexperience .('engage [.camonreserves theright 10remose additional conteatatanytime ifsubvoyjem nghts restrictions require It6.2 Gaussian Elimination 239 c.2*,=3, *i+1.5*2 =4.5, — 3*2+0.5*3 =— 6.6, 2*i 2*24-*3+*4=0.8. d.*i-\x2+*3 =4, 2*,-*2-*34-*4=5, *1+-*2 =2, *1-2*2+*3+*4=5. *1+*2 +"*4=2, 2*1+*2~*3+*4=la 4*i*22*3+-2*4=0, 3*i*2*3+-2*4=-3. *1+*2 +*4=2, 2*i+*2-*3+*4=1,-*,+2*2+-3*3-*4=4, 3*1— *2— *3+2l4=— 3. 4. UseMATLAB with long format andGaussian elimination tosolve thefollowing linear systems . a.j*i+-J*2+^*3=9, 5*1+|*2+J*3=8, 2*1+*2+2*3=8. b. 3.333*i+15920 *2-10.333 *3=15913 , 2.222*i+-16.71*2+-9.612*3=28.544 , 1.5611 *,+5.1791 *2+1.6852 *3=8.4254 . C.*l+-+j*3+” 1*4= 5*1+|*2+1*3+"§*4= 5*1+-1*2+-5*3+1*4=§. 1*1+-1*2+-1*3+-5*4= d.2*,+*2-*3+*4-3*5=7, *1 +-2*3-*4+-*5=2, -2*2-*3+*4-*5=-5, 3*i+*2-4*3 +5*5=6, *1-*2-*3-*4+-*5=3. 5. Given thelinear system 2*t— 6a*:=3, 3a*i-*2=| * a.Find value (s)ofaforwhich thesystem hasnosolutions . b.Find value (s)ofaforwhich thesystem hasaninfinite number ofsolutions . c.Assuming aunique solution exists foragiven a,findthesolution . 6. Given thelinear system *i-*2+-a*3=-2,-*i+-2*2-a*3=3, a*i+-*2+-*3=2. a.Find value (s)ofaforwhich thesystem hasnosolutions . b.Find value (s)ofaforwhich thesystem hasaninfinite number ofsolutions . c.Assuming aunique solution exists foragiven a,findthesolution . 7. Suppose thatinabiological system there arenspecies ofanimals andmsources offood.Letx} represent thepopulation ofthejthspecies foreach j=1 represent theavailable daily Copyright 2012 Cengagc Learn in*.AIRights Reversed May rotbecopied.scanned .ocimplicated ,inwhole orinpar.Doctocjectronie rlghtv.some third pur.ycontent may bevuppreved rrom theeBook and/orcChaptcnM .Editorial review h*> deemed Cutanysuppressed content does notmaxrUXy alTcct theoverall learning experience .('engage [.camonreserves theright 10remove additional eonteatatanytime ifsubsequent nghts restrictions require It240 C H A P T E R 6 Direct Methods forSolving Linear Systems supply oftheithfood;andayrepresent theamount oftheithfood consumed onaverage byamember ofthey'thspecies .Thelinear system 0n*i+012*2+   +0i„ *„ =bu 021*1+022*2H 4*02«*/»=bl. 0m1*1+0m2*2+***+0mn*n=b„ represents anequilibrium where there isadaily supply offood toprecisely meet theaverage daily consumption ofeach species . a.Let A=[au)=12 03 1 0 2 2 0 0 1 1 x=(xj)=[1000 ,500,350,4001 ,andb=fa)=[3500 ,2700 ,900].Isthere sufficient food tosatisfy theaverage daily consumption ? b.What isthemaximum number ofanimals ofeach species thatcould beindividually added tothe system with thesupply offood stillmeeting theconsumption ? c.Ifspecies 1became extinct ,how much ofanindividual increase ofeach oftheremaining species could besupported ? d.Ifspecies 2became extinct ,how much ofanindividual increase ofeach oftheremaining species could besupported ? 8. AFredholm integral equation ofthesecond kind isanequation oftheform «(*)=/(*)+r*(*.ouMt , where aandbandthefunctions /andKaregiven .Toapproximate thefunction uontheinterval [a,b],apartition x0=a deemed Cutanysuppressed content does notmamlaXy alTcct theioera .1learning experience .('engage [.camonreserves theright 10remove additional eonteat atanytime iisuhvcqjcM nghts restrictions require It