C H A P T E R Iterative Methods forSolving Linear Systems 7.1 Introduction Theprevious chapter considered theapproximation ofthesolution ofalinear system using direct methods ,techniques that would produce theexact solution ifallthecalculations were performed using exact arithmetic .Inthischapter wedescribe some popular iterative techniques ,which require aninitial approximation tothesolution .These methods arenot expected toreturn theexact solution even ifallthecalculations could beperformed using exact arithmetic .Inmany instances ,however ,theyaremore effective than thedirect methods because they canrequire farlesscomputational effort andround -offerror isreduced .This isparticularly truewhen thematrix issparse— thatis,when ithasahigh percentage ofzero entries . Some additional material from linear algebra isneeded todescribe theconvergence of theiterative methods .Principally ,weneed tohave ameasure ofhow close twovectors are tooneanother because theobject ofaniterative method istodetermine anapproximation thatiswithin acertain tolerance oftheexact solution . InSection 7.2,thenotion ofanorm isused toshow how various forms ofdistance between vectors canbedescribed .Wewillalsoseehow thisconcept canbeextended to describe thenorm of— and,consequently ,thedistance between — matrices .InSection 7.3, matrix eigenvalues andeigenvectors aredescribed ,andweconsider theconnection between these concepts andtheconvergence ofaniterative method . Section 7.4describes theelementary Jacobi andGauss -Seidel iterative methods .By analyzing thesizeofthelargest eigenvalue ofamatrix associated with aniterative method , wecandetermine conditions that predict thelikelihood ofconvergence ofthemethod . InSection 7.5weintroduce theSOR method .This isacommonly applied iterative tech- nique because itreduces theapproximation errors faster than theJacobi andGauss -Seidel methods . InSection 7.6wediscuss some oftheconcerns thatshould beaddressed when applying cither aniterative oradirect technique forapproximating thesolution toalinear system . Theconjugate gradient method ispresented inSection 7.7.This method ,with precon - ditioning ,isthetechnique most often used forsparse ,positive -definite matrices . 7.2 Convergence ofVectors The distance between thereal numbers xand yis\x— y\.InChapter 2wesaw that thestopping techniques fortheiterative root-finding techniques used thismeasure toes- timate theaccuracy ofapproximate solutions andtodetermine when anapproximation 277 Copyright 2012 Cengagc Lcarnlag .AIRight*Reserved May rscabecopied.scanned .orduplicated .'»whole ormpan.Doctoelectronic rights.tone third party content nu>besuppreved Trom theeBook and/oreChaptcnul .Editorial review h*> deemed thatanyvupprc'-cdcontent dee *,notmaterial !)affect theoverall learning experience .Ceng ageLearning reserves theright torerrx'cradditional conceal atanytime ifsubvcijjcni rights restrictions require it.278 C H A P T E R 7 Iterative Methods forSolving Linear Systems was sufficiently accurate .The iterative methods forsolving systems ofequations use similar logic ,sothefirst step istodetermine away tomeasure thedistance between n-dimensional vectors because thisistheform thatistaken bythesolution toasystem of equations . Vector Norms LetR"denote thesetofalln-dimcnsional column vectors with realnumber coefficients . Itisaspace -saving convenience tousethetranspose notation presented inSection 6.4 when such avector isrepresented interms ofitscomponents .Generally ,wewrite the vector x=*i x2 Xnas %=(xUX 2 xny. Vector Norm onR" Avector norm onR"isafunction ,|| ||,from R"intoRwith thefollowing properties : (i)||x||>0forallxRB, (ii)||x||=0ifandonly ifx=(0,0 0 )'=0, (iii)||orx||=|a|||x||forallcreRandxeRn, (iv)||x+y||<||x||+||y||forallx,yGR". Forourpurposes ,weneed only twospecific norms onRn.(Athird ispresented in Exercise 2.) The/2andlxnorms forthevector x=(JCJ,*2,".".x„Yaredefined by M 2=n 2£*.: i=l1/2 and IIx||oc,maxM. 1 deemed Cutany suppic-cdcontent does nottnaxrUXy alTcct theoverall learning experience .('engage [.camonreserves theright 10remove additional conteatatanytime ifsubsequent nghts restrictions require It7.2 Convergence ofVectors 279 Figure 7.1 *2, The vectors inR2 with l2norm less than 1areinside thisfigure .(0,1) 1,0)z \a,o) (0,-1)*3 (0,0,1)The vectors inthe first octant ofR3 with l2norm less than 1areinside thisfigure . (0,1,0) (1.0.0) *2 x Figure 7.2 (-I.D1*2i (0,1) ( 1.1)/ (-1.0)\(1.0) (-1,-1) (0,-D (1,-*3 (0,0,1) (1,0,1). (0,1,1) *i(1 . 1.1) (1,0,0) (0,1,0) (1 . 1.0) The vectors inU2with /*norm lessthan 1are inside thisfigure .The vectors inthefirst octant ofR3with /xnorm lessthan 1areinside thisfigure . Example 1Determine the/2norm andthe/«.norm ofthevector x=(— 1,1,— 2)'. Solution The vector x=(— 1,1,— 2)'inR3hasnorms M2=\/(-l)2+(l)2+(-2)2=V6 Copyright 2012 Cc«£»fcLearn in*.AIR.(huReversed May notbecopied .wanned .o*daplicatod .»whole oempan .Doc toelectronic ilfhu .xvtic third pony content may bevuppftvwd rrom theeBook aml/ofcCh deemed Cutany vuppic-edcontent doev notimxttaly alTect theoverall leamir*experience .C'cnitape[.cammu roervev thert|>ht10renxyve additional conceal atanytimeiivubvoyjem right.rotrietionv require It280 C H A P T E R 7 Iterative Methods forSolving Linear Systems and||x| |00=max{|-lUlU-2|)=2. Notice that||x||oo2 L1-11/2 and||x— y||oc max|Xi— 1 deemed Cutanysuppressed content does nottnaxrUXy alTcct theoverall learning experience .('engage Learning reserves theright 10remove additional conteat atanytime ifsubsequent rights restrictions require IL7.2 Convergence ofVectors 281 Solution Measurements ofx— xaregiven by ||x-t| |2=[(1-1.2001 )2+(1— 0.99991 )2+(1— 0.92538 )2]1/2 =[(0.2001 )2+(0.00009 )2+(0.07462 )2]'72=0.21356 . and ||x-x||oo=max{11-1.20011 ,|1-0.99991 |,|1-0.92538 |} =max{0.2001 ,0.00009 ,0.07462 (=0.2001 Although thecomponents x2andx3aregood approximations toX2andx3,thecomponent Jcjisapoor approximation tox\tand|xi-x\|dominates both norms . The distance concept inR"isused todefine thelimit ofasequence ofvectors .A sequence {x(A))^=1ofvectors inRnissaid toconverge toxwith respect tothenorm|| || if,given anye>0,there exists aninteger N(e)such that ||xU)— x||N(e). Example 3Show that x(*>_zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(JQJ*>r<*>— \X1 »x2 »*3„ 132+k'V'e-ksinit)' converges tox=(1,2,0,0)'with respect tothelxnorm. Solution Lete>0begiven .Foreach ofthecomponent functions , lim1=1, k-*OCsoaninteger N\(e)exists with forallk>/V,(e), lim(2+1/it)=2, K— *-Vsoaninteger N2(£)exists withN*’-2\N2(e\ lim3/fc2=0.k-*ocsoaninteger N$(e)exists with1*1*’-0|/V3(e), lime~ksink=0,soaninteger NA(e)exists with14**-0|7V4(e). Let N(e)=max (A7,(e),N2(e),tf3(e).N^e)}. Then when k>7V(e),wehave 11*(*)-x||oo=max{|x}*)-l|,\xl2k)-2|,-0|,\x\k)-0|} deemed Cutanyvupprc-cdcontent does notmaterial yalTect theoverall learning experience .('engage [.camonreserves theright loremove additional conteatatanytime ifsubsequent nghts restrictions require IL282 CHAPTER 7 Iterative Methods forSolving Linear Systems Then n n n 11*11«=l*fl2=x)0, (ii)||A||=0,ifandonly ifAis0,thematrix with allzero entries , (iii)||orA||=|ar|||A||, (iv)|A+*|<|A||+m, (v)||Afl||<||A|||*|. Every vector norm produces an associated natural matrix norm.Adistance between nxnmatrices Aand Bwith respect tothis matrix norm is ||A— Z?||.Although matrix norms canbeobtained invarious ways ,theonly norms wc consider arethose that arenatural consequences ofavector norm . Copyright 2012 Cengagc Learn in*.AIRighto Reversed May r*xbecopied .KaiUKd .o*dedicated .inwhole orinpar.Doc toejevtronie righto .some third pur.ycontent may besuppressed rrom theeBook aml/oreChaptcnal .Editorial review h*. deemed Cutanysuppressed content does nottnaxrUXy alTcct theioera .1learning experience .('engage [.camme reserves theright 10remove additional conceal atanytime ifsubvcqjem rights restrictions require It7.2 Convergence ofVectors 283 Natural Matrix Norm If|| ||isavector norm onR\thenatural matrix norm onthesetofnxnmatrices given by|| ||isdefined by ||A||=max||Ax||. So,the/2andlxmatrix norms are,respectively , ||A||2=max||Ax||2(the/2norm )and 11/11100=max||/\x||oc (thelxnorm ). 11*12=1 11*130=1 When n— 2these norms have thegeometric representations shown inFigures 7.3and7.4. Figure 7.3 x2i Nl* 1=1/1-1*1 -1X2 Ml. Ari Axfor 2|z|„ =1 ,K A..-V-T*' --2 Figure 7.4 *2i1 IWI 2=1 1"**sv -'Cr)'' -1x2 1 -3 Axfor . M 2= f\\AX Ml1\ -2\-1\_1'1 \2*1 -3- Copyright 2012 Cc«£»fcLearn in*.AIRifhb Reserved May notbecopied .N/anncd .o*duplicated.»whole oempan .Doc 10electronic rifhu .*wcthird pony content may besuppreved riom3ceBook and/orcCh deemed Cutany Mjppic-cdcontent dee>notmaxrUXy alTcct theoverall Icamir .itexperience .C'cnitapc [.camon roervei therljtlu lorenxyve additional conceal atanytime i iwtoeqjcni nRht »reMrictionc require IL284 C H A P T E R 7 Iterative Methods forSolving Linear Systems Thelocnorm ofamatrix hasarepresentation with respect totheentries ofthematrix thatmakes itparticularly easy tocompute . Matrix Norm Characterization Mil*,n max 1i;l=W+l2l+l- j=l1 1=4,3 5>2,|=|0|+|3|+|-1|=4, 7=1 52l“ 3>l=151+I-1|-H111=7. 7-1 So\\A\\X=max {4,4,7}=7. The/2norm ofamatrix isnotaseasily determined ,butinthenext section wewill discover analternative method forfinding thisnorm . E X E R C I S E S E T 12 1. Find| |xHoc and| |x||2forthefollowing vectors . a.x=(3,-4,0,1)' b-x=(2.1,-3,4)' c.x=(sink,cosk,2k)'forafixed positive integer k d.x=(4/(jfc4-1),2/A:2,k2e~k)‘forafixed positive integer k 2. a.Verify that|| ||iisanorm forR"(called thel\norm ),where n l|i| |,=X>|. 4=1 b.Find||x||tforthevectors given inExercise 1. 3. Show thatthefollowing sequences areconvergent ,andfindtheir limits. a.x<*>=(1/Jfc,e1"*,— 2/k2)1 b.xik)=(ekcos A:,/:sin(l/k),3+k2)‘ c.x(*’=(ke~k‘,(cosA:)/A:,Jk2+k— A:)* d.x(A)=(e l/k,(A:2+1)/(1-A:2),(1/A:2)(1+3+5+..*+(2A:-1)))' Copyright 2012 Cengagc Learning .AIRights Reserved May notbecopied ,canned ,orduplicated .inwhole orinpar.Doctoelectronic rights.xvtic third pur.ycontent may besupprcsted rrom theeBook andtor cCh deemed Cutany suppic-cdcontent does nottnaxrUXy alTect theiAera .1learning experience .Collage Learning reserve*theright*>renxyve additional conteatatanytime ifsubsequent rights restrictions require It7.3 Eigenvalues andEigenvectors 285 4. Find|| ll*forthefollowing matrices . 5.rioisia-[0.J C.2-1 0-1 2-1 0-1 2b. d.10 15 4-1-70 1 -1 4 07 0 4 Thefollowing linear systems Ax=bhave xastheactual solution andkasanapproximate solution . Compute ||x-xll*,and||Ax— bll^. 1 1 1a.2*'+3*2=63’ 1 1 1 3*1+4*2=168- X-(H)' k=(0.142 ,-0.166 )'. b. JCJ+2x2+3*3=1, 2xi-f-3x24"4x3=— 1* 3*i+4x2+6x3=2, x=(0,-7,5)', x=(-0.33,-7.9,5.8)'. c. x\+2X2+3X3=1, 2x|+3X2+4*3=1, 3*1+4X2+6x3=2, x=(0,-7,5)', x=(— 0.2,-7.5,5.4V. d.0.04 xj-I-0.01x2-O.OIxj=0.06 , 0.2xj+0.5X2-0.2x3=0.3, X\-+ 2x2 4x3=11, x=(1.827586 ,0.6551724 ,1.965517 )', *=(1.8,0.64,1.9V. 6. The/1matrix norm ,defined by| |A||1=max||Ax||1,canbecomputed using theformula Xij=l /1 Mill=maxVia ,,I, where thel\vector norm isdefined inExercise 2.Find the/1norm ofthematrices inExercise 4. 7. Show byexample that|| ||,v,defined byMIL ,=^ax|a<;|,does notdefine amatrix norm. 8. Show that|| ||®,defined by n n 1=1J m1 isamatrix norm.Find| | ||®forthematrices inExercise 4. 9. Show thatif|| ||isavector norm onRn,then||A||=maxsi_,| |Ax||isamatrix norm. 7.3 Eigenvalues andEigenvectors A n n x m matrix canbeconsidered asafunction thatuses matrix multiplication totake m-dimensional vectors inton-dimensional vectors .Soannxnmatrix Atakes thesetof Copyright 2012 Cc«£»fcLearn in*.AIR.(huReversed May notbecopied.wanned .o*duplicated.»whole oempan .Doctoelectronic ilfhu.xvtic third pony content may besupposed rtom theeBook and/orcCh deemed Cutanyvupprccscd content deev notimxttaly alTect theoverall leamir*experience .Ccfiitjpc [.camon roentt theri|>ltt10remote additional conceal atanytime i ivutoeqjroi nghtv toirk-tionv require It.286 C H A P T E R 7 Iterative Methods forSolving Linear Systems n-dimensional vectors intoitself.Inthiscase certain nonzero vectors canhave xand Ax parallel ,which means thataconstant Aexists with A x=Ax,orthat (A-X I)x=0.There isaclose connection between these numbers Xandthelikelihood thataniterative method based onAwillconverge .Wewillconsider theconnection inthissection . Forasquare nxnmatrix A,thecharacteristic polynomial ofAisdefined by p(X)=det(A-X I). Because oftheway thedeterminant ofamatrix isdefined ,pisannth-degree polynomial and,consequently ,hasatmost ndistinct zeros ,some ofwhich might becomplex .These zeros ofparecalled theeigenvalues ofthematrix A. Theresult onpage 256inChapter 6,then,implies thatthefollowing areequivalent :  Xisaneigenvalue ofA,  A— X Idoes nothave aninverse ,  there exists avector x^0with A x=X x,  det(A— X I)=0. Theprefix eigen comes from the German adjective meaning “ to own” andissynonymous in English with theword characteristic .Each matrix has itsown eigen-orcharacteristic equation ,with corresponding eigen -orcharacteristic values andfunctions .Ifxisanonzero vector with A x=AX,thenxiscalled aneigenvector ofAcorresponding totheeigenvalue X.Note thatifxisaneigenvector ofAcorresponding totheeigenvalue X,then anynonzero scalar multiple axofxisalsoaneigenvector ofAcorresponding toX because A(ax)=a(Ax)=a(Ax)=A(ax). Ifxisaneigenvector associated with theeigenvalue X,then Ax=X x,sothematrix A takes thevector xintoascalar multiple ofitself.When Xisarealnumber and X>1,Ahas theeffect ofstretching xbyafactor ofX.When 01 (b)1>A>0 (c)A<-1 (d)-1 deemed Cut artyMpptccscd content dcc>notmaterial'.yafTccr theoverall learnire experience .Cenitape Learnxip roctvev theright Mremove additional conceal atanytime i!vutoeqjrni right*restriction*require It.7.3 Eigenvalues andEigenvectors 287 Solution Thecharacteristic polynomial ofAis p(A)=dct(A-A/)=dct 1 1-A 2 1-14— A =-(A.3-7A2+16A-12)=-(A-3)(A.-2)2, sothere aretwoeigenvalues ofA:Ai=3and A2=2. Aneigenvector Xi^0corresponding totheeigenvalue Aj=3isasolution tothe vector -matrix equation (A-3 7)xj=0,so '0 -1 0 0‘X\ -X\ 0=1-2 2  X2=x\-2x2+2x3 0 1-11 .X3. x\-X2+x3 which implies thatx\=0andxi— X3.Anynonzero value of*3produces aneigenvector for theeigenvalue Aj=3.Forexample ,when *3=1wehave theeigenvector \\=(0,1,1)'. Any eigenvector ofAcorresponding toA=3isanonzero multiple of\\. Aneigenvector X2^0ofAassociated with theeigenvalue A2=2isasolution ofthe system (A— 2/)x=0,so '0* '0 0 0'*1"0 0= 1-12  X2= X\— X2+2X3 0 1-12 .X3.X\-X2+2X3 Inthiscase theeigenvector hasonly tosatisfy theequation xx-x2+2x3=0, which canbedone invarious ways.Forexample ,when xj=0wehave*2=2x3,so onechoice would beX2=(0,2,1)'.Wecould also choose *2=0,which requires that x\=-2x3.Hence x3=(-2,0,1)'gives asecond eigenvector fortheeigenvalue A2=2, onethatisnotamultiple ofX2. Theeigenvectors ofAcorresponding totheeigenvalue A2=2generate anentire plane. This plane isdescribed byallvectors oftheform ax2+0x3=(-20,2a,a+0)', forarbitrary constants aand0,provided thatatleast oneoftheconstants isnonzero . The next example illustrates thateven some very simple matrices canhave noreal eigenvalues . Example 2Show thatthere arenononzero vectors xinR2with Bxparallel toxif B=01-10 Solution Theeigenvalues ofBarethesolutions tothecharacteristic polynomial 0=det(fl-A/)=det-A 1-1-AA2+l, sotheeigenvalues ofBarethecomplex numbers Ai eigenvector xforAjneeds tosatisfyiand A2=— 1.Acorresponding 0 -i 1 X\ -ix1+X2 0 -1-i x2 X\-ix2 Copyright 2012 Cengagc Learn in*.AIRight *Reserved Mayr*xbecopied ,canned ,o*duplicated .»whole otmpan .Doctoelectronic right*.some third pony content may besuppressed horn theeBook and/orcCluptcnM .Editorial roiew h*> deemed Cutanysuppressed content dee*notimxttaly alTect theoverall Icamir .itexperience .Ccri|tape Learning reserves theright lorenxyve additional conceal atanytimeiisubsequent right*restrictions require It288 C H A P T E R 7 Iterative Methods forSolving Linear Systems thatis,0=— ix\+*2»so*2=**i»andaneigenvector forA]=iis(1,i)‘.Inasimilar manner ,aneigenvector forA2=— iis(1,—i)r. Ifxisaneigenvector ofB,then exactly oneofitscomponents isrealandtheother is complex .Asaconsequence ,there isnorealconstant Aandnonzero vector xinR2with Bx=Ax,andhence there isnononzero vector xinR2with Bxparallel tox. MATLAB provides methods todirectly compute theeigenvalues andeigenvectors of amatrix .Wefirstdefine thematrix Aby A-[102;01-1;-111] Thecharacteristic polynomial isdetermined with p=poly (A) giving p=1.0000— 3.0000 6.0000-4.0000 Thenumbers arethecoefficients ofthecharacteristic polynomial indescending order ,so p(X)=X?-3A.2+6A.-4. Wecannow compute theroots ofthepolynomial toobtain theeigenvalues with roots (p) The most direct way toobtain eigenvalues iswith theeigcommand . eig(A) Ifwewant thecorresponding eigenvectors ,weenter eigas [V,D]=eig(A) which produces thefollowing matrix Vandvector D.Wehave rounded theentries inVso thatitwilldisplay ononeline. V=-0.70710678 -0.70710678 0.70710678 0.35355339 +0.00000000 / 0.35355339 -0.00000000 / 0.70710678-0.00000000 -0.61237244 /-0.00000000 +0.61237244 /0.00000000 D=0.999999999999999 +1.732050807568876 / 0.999999999999999 -1.732050807568876 / 1.000000000000000 Thecolumns ofVareeigenvectors ofAcorresponding totheeigenvalues intherows ofD. Thenotions ofeigenvalues andeigenvectors arcintroduced here foraspecific compu - tational convenience ,butthese concepts arise frequently inthestudy ofphysical systems .In fact,theyareofsufficient interest thatmost ofChapter 9isdevoted totheir approximation . Spectral Radius Thespectral radius p(A)ofamatrix Aisdefined by p(A)=max|A|,where Aisaneigenvalue ofA. (Note :Forcomplex A=a+f)i,wehave|A|=(or+p2)l/2.) Copyright 2012 Cenfajc Learn in*.AIR.(huRocncd Mayr*xbecopied.v.-aitned.o*implicated ,inwhole orinpar.Doctocjectronie rifhu.*wcthird pur.ycontent may besupplied rican theeBook and/orcChaptcnM .Editorial roiew h*> deemed CutanyMpprcucd content does notmaterialy alTcct theoverall Icamir*experience .Ccnpge l.cammu reserves thert|>ht10remove additional conceal atanytime ifvutoeqjcni nghtv restrictions require It.7.3 Eigenvalues andEigenvectors 289 Example 3Determine thespectral radius ofthematrices '2 0 0' 01-i°A= 1 112-14and B= Solution InExample 1wefound thattheeigenvalues ofAwere k\=3and A2=2.So p(A)=max{|3|,|2|)=3, andinExample 2wefound thattheeigenvalues ofBwere k\=iand A2=— i.So p(B)=max{\/l2,%/(— l)2}=1. Thespectral radius isclosely related tothenorm ofamatrix . /2Matrix Norm Characterization IfAisannxnmatrix ,then (i)||A||2=[p(A'A)]1/*; (ii)p(A)<||A||foranynatural norm . Thefirstpartofthisresult isthecomputational method fordetermining the/2norm of matrices thatwementioned attheendoftheprevious section . Example 4Determine the/2norm of A=1 1 0 121-112 Solution Toapply part(i)ofthe/2Matrix Norm Characterization ,weneed tocalculate p(A'A),soweneed theeigenvalues ofA'A. If‘1 1-1‘1 1 0'32— 1 12 1 121=26 4 01 2-1 1 2 -1 4 5 3— A 2-1 0=det(A'A— kl)=det 2 6-k 4-1 4 5-k =-X1+14A2-42A.=-A(X2-14X+42), then A.=0o r X=7±y/l.So ||i4| |2=s/p{A deemed Cutanysupprc-cdcontent does notnuxtlaly alTcct theoverall learning experience .Ccagagc [.camonreserves theright 10remove additional conteat*anytime iisubsequent rights restrictions require It.290 C H A P T E R 7 Iterative Methods forSolving Linear Systems Theoperations inExample 4canalso beperformed using MATLAB .First define A«[110;121;-112] then compute itstranspose anddetermine A'A,andtheeigenvalues ofA'A u=eig(A’*A) This gives theeigenvalues as u=0.000000000000003 4.354248688935409 9.645751311064592 Thesquare rootofthelargest eigenvalue isthe/2norm ofA sqrt (u(3) ) which MATLAB gives as3.105760987433610 . The/2norm ofAcanalso bedirectly computed with nonn (A) The/00norm ofAisfound with norm (A,Inf). Convergent Matrices Instudying iterative matrix techniques ,itisofparticular importance toknow when the powers ofamatrix become small (thatis,when alloftheentries approach zero).Wecall annxnmatrix Aconvergent if,foreach i=1,2,...,nandj=1,2,...,n,wehave lim(A%=0. Example 5Show that A=\0iij isaconvergent matrix . Solution Computing thepowers ofA,weobtain : 1 4 1 40 1 4,A3=01 8 3_1 16 8,A4=JL016U 1 81 16 and,ingeneral. Ak'( ^>*0 S&T( ^)* SoAisaconvergent matrix because lim k-*-OCG)‘0and limTATk— *OC2*+1=0. Copyright 2012 Cc«£»fcLearn in*.AIR.(huReversed May notbecopied.wanned .o*daplicated.»whole oempan.Doctoelectronic ilfhu.vontc third pony content may besupposed rrom theeBook and/orcCh deemed Cutanyvuppicwed content doev notmaterial yalTect theoverall leamir*experience .C'criitape[.camon roentt theripltt KVrenxyve additional conceal atanytime i ivutoeqjmi nghtv rotrletionv require It7.3 Eigenvalues andEigenvectors 291 Thefollowing important connection exists between thespectral radius ofamatrix and theconvergence ofthematrix . Convergent Matrix Equivalences Thefollowing areequivalent statements : (i)Aisaconvergent matrix . (ii)limn^oc||A"||=0,forsome natural norm . (iii)limn_t3c||A',||=0,forallnatural norms . (iv)p(A)<1. (v)lim^^ocA"x=0,forevery x. E X E R C I S E S E T 7 . 3 l. 2. 3. 4. 5. 6. 7.Compute theeigenvalues andassociated eigenvectors ofthefollowing matrices . a. c. e. 8-2-1-1 2 °>11°. 210 120 003 ‘21 1" 232 1 1 2b.01 1 1 d.1 1-2-2 f. h.-1 2 0' 034 0 0 7 3 2-1' 1-2 3 2 0 4 Find thespectral radius foreach matrix inExercise 1. Show that A,10 Ii  *2. isnotconvergent ,but isconvergent . Which ofthematrices inExercise 1areconvergent ? Find the|| ||2norms ofthematrices inExercise 1. Show thatifXisaneigenvalue ofamatrix Aand| | ||isavector norm ,thenaneigenvector xassociated with Xexists with||x||=1. Find 2x2matrices AandBforwhich p(A+B)>p(A)+p{B).(This shows thatp(A)cannot be amatrix norm.) Copyright 2012 Cc«£»fcLearn in*.AIR.(huReversed Mayr*xbecopied ,canned ,o*duplicated.»whole o tmpan.Doctoelectronic rifhu.vomc third pony content may besupposed ftem theeBook and/orcCh deemed Cutanyvuppicwcd content doev nottmxtlaly alTect theoverall Icamir .itexperience .C'criitapeLearn oprexxvev therljtlu lorenxyve additional conceal atanytime i ivutoeqjrni nphtv rotrictionv require It.292 C H A P T E R 7 Iterative Methods forSolving Linear Systems 8. Show thatifAissymmetric ,then||A||2=p(A). 9. Let Abeaneigenvalue ofthenxnmatrix Aandx^0beanassociated eigenvector . a.Show that A.isalsoaneigenvalue ofA'. b.Show thatforanyinteger k>1,A*isaneigenvalue ofA*with eigenvector x. c.Show thatifA1exists ,then 1/Aisaneigenvalue ofA-1with eigenvector x. d.Leta^Abegiven.Show thatif(A-a/)"1exists ,thenl/(A-a)isaneigenvalue of(A-a/)"1 with eigenvector x. 10. InExercise 8ofSection 6.4,itwasassumed thatthecontribution afemale beetle ofacertain type made tothefuture years ’beetle population could beexpressed interms ofthematrix A=0 0 6 l0 0 0 To where theentry intheithrowandy'thcolumn represents theprobabilistic contribution ofabeetle of agejonto thenext year’sfemale population ofagei. a.Does thematrix Ahave anyrealeigenvalues ?Ifso,determine them andanyassociated eigen - vectors . b.Ifasample ofthisspecies wasneeded forlaboratory testpurposes thatwould have aconstant proportion ineach agegroup from year toyear,what criteria could beimposed ontheinitial population toensure thatthisrequirement would besatisfied ? 7.4TheJacobi andGauss -Seidel Methods Inthissection wedescribe theelementary Jacobi andGauss -Seidel iterative methods .These areclassic methods thatdate tothelateeighteenth century ,butthey findcurrent application inproblems where thematrix islarge andhasmostly zero entries inpredictable locations . Applications ofthistype arecommon ,forexample ,inthestudy oflarge integrated circuits andinthenumerical solution ofboundary -value problems andpartial -differential equations . General Iteration Methods Aniterative technique forsolving thenxnlinear system Ax=bstarts with aninitial approximation x(0)tothesolution xandgenerates asequence ofvectors {x(A)}^1that converges tox.These iterative techniques involve aprocess thatconverts thesystem Ax=b intoanequivalent system oftheform x=T x+cforsome nxnmatrix Tandvector c. After theinitial vector x(0)isselected ,thesequence ofapproximate solution vectors is generated bycomputing \{k)=T%{k~l)A-c foreach k=1,2,3, Thefollowing result provides animportant connection between theeigenvalues ofthe matrix Tandtheexpectation thattheiterative method willconverge . Convergence andtheSpectral Radius Thesequence x(*)=T x(k-\)+c converges totheunique solution ofx=Tx+cforanyx10’inR"ifandonlyifp (T)<1. Copyright 2012 Cengagc Learn in*.AIRight*Reversed May rotbecopied.wanned .orimplicated ,inwhole orinpar.Doctocjectronie right*.some third pur.ycontent may besupplied horn theeBook and/orcChaptcnM .Editorial review h*> deemed Cutanysuppressed content dee*notmaterial yafTcct theoverall learnire experience .Cette jpeLearn xieroene *theright Mremove additional conceal atanytime i!vuhvcyjcm right*restriction*require It.