44 C H A P T E R 2 Solutions ofEquations ofOneVariable 17. The particle inthefigure starts atrestonasmooth inclined plane whose angle 6ischanging ata constant rate Attheendoftseconds ,theposition oftheobject isgiven by -sincur ^. Suppose theparticle hasmoved 1.7ftin1s.Find,towithin 10-5,therate IDatwhich 0changes . Assume thatg=-32.17 ft/s2.*(0=8 2w2\(e°*-e** 0(t) 2.4Newton 'sMethod Isaac Newton (1641-1727 )was oneofthemost brilliant scientists ofalltime.Thelate17thcentury wasavibrant period forscience andmathematics andNewton ’s work touches nearly every aspect ofmathematics .Hismethod forsolving wasintroduced to findarootoftheequation y3—2y—5=0,Although he demonstrated themethod only for polynomials ,itisclear thathe realized itsbroader applications .TheBisection andSecant methods both have geometric representations thatusethezero of anapproximating linetothegraph ofafunction /toapproximate thesolution tof(x)=0. Theincrease inaccuracy oftheSecant method over theBisection method isaconsequence ofthefactthatthesecant linetothecurve better approximates thegraph of/thandoes the lineused togenerate theapproximations intheBisection method . Thelinethatbest approximates thegraph ofthefunction atapoint onitsgraph isthe tangent linetothegraph atthatpoint.Using thislineinstead ofthesecant lineproduces Newton ’smethod (also called theNewton -Raphson method ),thetechnique weconsider inthissection . Newton 'sMethod Suppose that poisaninitial approximation totheroot poftheequation f(x)=0andthat /'exists inaninterval containing alltheapproximations top.Theslope ofthetangent line tothegraph of/atthepoint (po,/(po))is/'(po),sotheequation ofthistangent lineis y-/(Po)=f\po)(x-Po). Copyright 2012 Cengagc Learn in*.AIR.ghivReserved Mayr*xbecopied ,canned ,o*daplicaied.»whole o»zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmpan .Doctoelectronic rifhu.*wcthird pony contcac may besoppre ^tedftem theeBook and/orcCh deemed Cut artyMpptccscd content dcc>notmaterial'.yafTcct theoverall learnire experience .Cenitape Learnxip roctvev theright Mremove additional conceal atanytime i!vuhvcyjcw nghtv rotrictions require it2.4 Newton 'sMethod 45 Figure 2.6 Newton 'sMethod Example 1 Program NEWTON 24 implements Newton ’s method .This tangent linecrosses thex-axiswhen the^-coordinate ofthepoint onthelineis0, sothenext approximation ,putopsatisfies 0-f(po)=f'(po)(Pi-Po), which implies that Pi Po-f(Po) f'(Po)' provided that f'(po)^0.Subsequent approximations arefound forpinasimilar manner , asshown inFigure 2.6. y - Slope/'(p,)/^y=/(x) /iPiJ (Pi)) po p/fSlope/'(po) X '^^KPuJiPo )) Theapproximation p„+\toarootoff(x)=0iscomputed from theapproximation p n using theequation Pn+1f(Pn) f'(Pn)' provided that f'(pn)i10. UseNewton ’smethod withp0=1toapproximate therootoftheequation x3-f4x2-10=0. Solution WewilluseMATLAB tofindthefirsttwoiterations ofNewton ’smethod with Po=1.Wefirstdefine/(*),/'(*),and pOwith f-inline (»x-3+4*x~2-10»,»x1) fp=inlineC,3*x"2+8*x>,’x*) p0=l Copyright 2012 Cc«£»fcLcarni #*.AIRight,Rcictved .May ncabecopied .Knitted.orAliened.»whole oempar.Doc 10electronic right,.some third puny content may besuppreved riom theeBook andtor cCh where fliesbetween pnand p.Consequently ,iff'(pn)^0,wehave Since thisimplies that,f(P n)p-Pn+-r,/'(Pn) 2/'(P)'^(p-Pn)2- P"+'~P" f’iPnY P~Pn+l=P-Pn+/(P») /'(Pn)/"($) 2/'(Pn)(P“ Pn)2- Copyright 2012 Certfaje Learniit*.AIRighb Reserved May ncabecopied.scanned .orduplicated.»whole oempan.Doc ioelectronic rights.some third pur.ycontent may besuppreved Tiom theeBook aml/ofcCh deemed CutanyMpptcsscd content dees notmaterial yalTect theiAvra .lIcamir*experience .Ccnitasc[.camonreserves theri|>htioremote additional conteat*anytime iisubsequent rights restrictions requite It.2.4 Newton 'sMethod 47 Ifapositive constant Mexists with|/"(JC)|p Ingeneral ,azero ofmultiplicity mofafunction /occurs atpifafunction qexists with theproperty that,forxp, /(*)=(*-P)mqix ), where Urnq{x)#0.x-*P Soasimple zero isonethathasmultiplicity 1. Cop>?i£tu2012 Cc«£»fcLearn in*.AIR.(huRocncd Mayr*xbecopied ,canned ,o*daplicaied.»whole o»mpan .Doctoelectronic rifhu.*wcthird pony contcac may besoppre ^tedftem theeBook and/orcChnotimtetlaly afTcct theoverall learning experience .Cenitapc l.camon roenti theright Mremove additional conceal atanytime i!vuhvcyjcw nghtv mtrictionc require It.48 C H A P T E R 2 Solutions ofEquations ofOneVariable Bytaking consecutive derivatives andevaluating atpitcanbeshown that  Afunction /with mderivatives atphasazero ofmultiplicity matpifandonly if o=/(p)=/'(/>)=   =butf(p)#0. When thezero isnotsimple ,Newton ’smethod might converge ,butnotwith thespeed wehave seen inourprevious examples . Example 3Let f(x)=e*— x— 1.(a)Show that/hasazero ofmultiplicity 2atx=0. (b)Show thatNewton ’smethod with p o=\converges tothiszero butnotasrapidly astheconvergence inExamples 1and2. Table 2.6Solution (a)Wehave n Pn 0 1.0 1 0.58198 2 0.31906 3 0.16800 4 0.08635 5 0.04380 6 0.02206 7 0.01107 8 0.005545 9 2.7750 x10-’10 1.3881 x10~3 11 6.9411 x10~4 12 3.4703 x104 13 1.7416 x104 14 8.8041 x10“ 5 15 4.2610 x105 16 1.9142 xlO6f(x)=e x-x-1, so /(0)=e°-0-1=0./'(*)=e x-\ /'(0)=e°-1=0and f'(x)=e x, and/"(0)=e°=1. This implies that/hasazero ofmultiplicity 2atx=0. (b)Thefirsttwoterms generated byNewton ’smethod applied to/with p0=1are andPi P o/(Po) /'(po)1--— ?«0.58198 ,e— 1 P2=P\~/(Pi) /'(Pi)%0.58198 -0.20760 0.78957%0.31906 . Thefirsteight terms ofthesequence generated byNewton ’smethod areshown inTable 2.6. Thesequence isclearly converging to0,butnotasrapidly astheconvergence inExamples 1 and2.Thegraph of/isshown inFigure 2.7. Figure 2.7 /«, 1- (L e-2)e— 2 (-1.*’1) V.- i1H1 II ’s\ 1— -1“ 1 ^ 1X One method forimproving theconvergence toamultiple root isconsidered in Exercise 8. Copyright 2012 Cc«£»fcLearnin*.AIRighb Rcscncd May ncabecopied ,canned ,orduplicated.»whole oempar.Due 10electronic ttfht ».*wcthird pur.ycontent may besuppressed ftem theeBook and/orcClupccriM .Editorial toiew h*> deemed Cutanysuppressed content decs notimxtlaly alTcct theoverall lcamir«experience .Ccnitasc[.camonreserves thert|>httoremose additional conteatatanytime iisuhvcyjcw rights restrictions require It.2.4 Newton 'sMethod 49 E X E R C I S E S E T 2 . 4 l. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.Letf(x)=x2-6andp0=1.UseNewton ’smethod tofindp2. Let/(x)=-x3-cos*andp0=-1.UseNewton ’smethod tofind p2.Could p0=0beused for thisproblem ? UseNewton ’smethod tofindsolutions accurate towithin 104forthefollowing problems . a.x3— 2x2— 5=0,on [1,4] b.x3+3x2-1=0,on [-3,-2] c.x— cos*=0,on [0,7i/2) d.x-0.8-0.2sinx=0,on [0,TT/2] UseNewton ’smethod tofindsolutions accurate towithin 105forthefollowing problems . a.2xcos2x-(x-2)2=0,on[2,3]and[3,4] b.(x— 2)2— lnx=0,on[1,2]and [e,4] c.ex— 3x2=0,on[0,1]and[3,5] d.sinx— e~x=0,on[0,1],[3,4],and[6,7] Use Newton ’smethod tofindallfour solutions of4xcos(2x)— (x— 2)2=0in[0,8]accurate to within 10"5. UseNewton ’smethod tofind allsolutions ofx24-10cosx=0accurate towithin 10-5. UseNewton ’smethod toapproximate thesolutions ofthefollowing equations towithin 10~5inthe given intervals .Inthese problems ,theconvergence willbeslower than normal because thezeros are notsimple . a.x2— 2xe~*+e-2*=0,on [0,1] b. COS(X+V^)+J:U/2+V2)=0,on [-2,-1] c.x}-3*2(2-')+3x(4-*)+8'=0,on [0,1] d.e<“ +3(ln2)V'-(ln8)e4'-(ln2)\on[-1,0] Thenumerical method defined by f(Pn-l)f\Pn-1) Pn^ [f'(Pn-l))2~/(p*-,)/"(p*-,)’ forn=1,2,...,canbeused instead ofNewton ’smethod forequations having multiple zeros. Repeat Exercise 7using thismethod . UseNewton ’smethod tofindanapproximation toy/3correct towithin 104,andcompare theresults tothose obtained inExercise 9ofSections 2.2and2.3. UseNewton ’smethod tofindanapproximation toV^25correct towithin 10~6,andcompare theresults tothose obtained inExercise 10ofSections 2.2and2.3. Newton ’smethod applied tothefunction /(x)=x2— 2with apositive initial approximation p0 converges totheonly positive solution ,V2. a.Show thatNewton ’smethod inthissituation assumes theform that theBabylonians used to approximate V2: b.Usethesequence in(a)with p0=1todetermine anapproximation thatisaccurate towithin io-5. InExercise 14ofSection 2.3,wefound thatfor/(x)=tannx-6,theBisection method on[0,0.48 J converges more quickly than themethod ofFalse Position with p0=0andp,=0.48.Also ,the Secant method with these values ofpoandp\does notgiveconvergence .Apply Newton ’smethod to thisproblem with (a)po=0and(b)po=0.48.(c)Explain thereason foranydiscrepancies . UseNewton ’smethod todetermine thefirstpositive solution totheequation tanx=x,andexplain why thisproblem cangive difficulties . Cop>?i£tu2012 Cc«£»fcLearn in*.AIR.(huRocncd Mayr*xbecopied ,canned ,o*daplicaied.»whole o»zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmpan .Doctoelectronic rifhu.*wcthird pony contcac may besJJppre ^tedftem theeBook and/orcCh deemed CutanyMpprcucd content dee>notnuxtiily alTect theoverall Icamir .itexperience .Ccfiitapc [.camme roentt therljtlu 10renxwe additional conceal atanytime i itutoeqjroi nghtv rotrictionc require It5 0 C H A P T E R >Solutions ofEquations ofOneVariable 14. 15. 16. 17. 18. 19. 20.UseNewton ’smethod tosolve theequation * 1 1 7 , 1 ., 710=-+-x— xsinx— -cos2x,with p{)=— .2 4 2 2 Iterate using Newton ’smethod until anaccuracy of105isobtained .Explain why theresult seems unusual forNewton ’smethod .Also ,solve theequation with p0=5TTand p0=10TT. Player Awillshut out(winbyascore of21-0)player Binagame ofracquetball with probability P=l± £( PV1 2U-P+P V' where pdenotes theprobability that Awillwinanyspecific rally (independent oftheserver ).(See (K,JJ,p.267.)Determine ,towithin 10\theminimal value ofpthatwillensure thatAwillshut out Binatleast halfthematches they play. Thefunction described by/(x)=ln(x:+1)— e0AxCOSTTX hasaninfinite number ofzeros. a.Determine ,within 10'6,theonly negative zero. b.Determine ,within 106,thefour smallest positive zeros. c.Determine areasonable initial approximation tofindthenthsmallest positive zero of/.[Hint: Sketch anapproximate graph of/.] d.Use(c)todetermine ,within 10"6,the25thsmallest positive zero of/. Theaccumulated value ofasavings account based onregular periodic payments canbedetermined from theannuity  dueequation , A-^ia+iy-i]. I Inthisequation ,Aistheamount intheaccount ,Pistheamount regularly deposited ,andiisthe rateofinterest perperiod forthendeposit periods .Anengineer would liketohave asavings account valued at$750,000upon retirement in20years andcanafford toput$1500 permonth toward this goal.What istheminimum interest rateatwhich thisamount canbeinvested ,assuming that the interest iscompounded monthly ? Problems involving theamount ofmoney required topayoffamortgage over afixed period oftime involve theformula A=^[l-(l I known asanordinary annuity equation .Inthisequation ,Aistheamount ofthemortgage ,Pisthe amount ofeach payment ,andiistheinterest rateperperiod forthenpayment periods .Suppose that a30-yearhome mortgage intheamount of$135,000isneeded andthattheborrower canafford house payments ofatmost $1000 permonth .What isthemaximum interest ratetheborrower canafford to pay? Adrug administered toapatient produces aconcentration intheblood stream given byc(/)=Ate~,f3 milligrams permilliliter thours after Aunits have been injected .Themaximum safe concentration is1mg/ml. a.What amount should beinjected toreach thismaximum safeconcentration andwhen does this maximum occur ? b.Anadditional amount ofthisdrug istobeadministered tothepatient after theconcentration falls to0.25 mg/ml.Determine ,tothenearest minute ,when thissecond injection should begiven . c.Assuming that theconcentration from consecutive injections isadditive andthat75%ofthe amount originally injected isadministered inthesecond injection ,when isittime forthethird injection ? Let/00=33i+l-7 S2*. a.UsetheMATLAB function fzero totrytofindallzeros of/. b.Plot/(x)tofindinitial approximations toroots of/. c.UseNewton ’smethod tofind roots of/towithin 10-16. d.Find theexact solutions of/(x)=0algebraically . Copyright 2012 Cengagc Learn in*.AIRights Reserved Mayr*xbecopied .scanned .ocimplicated ,inwhole orinpar.Doc tocjectronie rights .some third pur.ycontent maybesupplied ftem theeBook and/orcChapccmi .Editorial review h*> deemed Cutanysuppressed content does notmaterialy alTcct theoverall learning experience .Catgagc l.cammu reserves theright*>remove additional conceal atanytimeiisubsequent nghts restrictions require It.2.5 Error Analysis andAccelerating Convergence 51 2.5 Error Analysis andAccelerating Convergence Intheprevious section wefound thatNewton ’smethod generally converges very rapidly ifa sufficiently accurate initial approximation hasbeen found .This rapid speed ofconvergence isduetothefactthatNewton ’smethod produces quadratically convergent approximations . Order ofConvergence Suppose thatamethod produces asequence {p„ }ofapproximations thatconverge toa number p.  Thesequence converges linearly if,forlaige values ofn,aconstant 0„ _ 2|2]2=(0.5)3|p„ .2|4 *(0.5)3[(0.5)|p„ _312]4=(0.5)7|p„ _318 «-.-«(0.5)2'’-1|A,|2". Table 2.7illustrates therelative speed ofconvergence ofthesequences to0if|/?oI=Ipol=1- Copyright 2012 Cc«£»fcLcarni #*.AIRighb Rocrscd May notbecopied.N.anncd.orduplicated.»whole oempar.Doc 10electronic ttfht ».*wtcthird pur.ycontent may besuppressed ftem theeBook and/orcClupccriM .Editorial toiew h*> deemed Cutany suppic-cdcontent dee>notimxtlaly alTcct theoverall leamir*experience .Ccnitasc[.cammu rexrvei theri|>httorenxyve additional contort atanytime i iwtoeqjcoi rights restrictions require It.