427 10.4 TheSteepest Descent Method Itcanbeshown thatifA_ lexists andx,yR",then (A+xy')~lexists ifandonly ify'A~1x^—l.Use thisresult toverify theSherman -Morrison formula :IfA1exists andy'A1x^-1,then (A+xy') exists ,and9.-l A'lxy'A 1+y,A-1x‘-l (A+xy')1=A1 10.4 TheSteepest Descent Method Theadvantage oftheNewton andquasi-Newton methods forsolving systems ofnonlinear equations istheir speed ofconvergence once asufficiently accurate approximation isknown . Aweakness ofthese methods isthatanaccurate initial approximation tothesolution is needed toensure convergence .Themethod ofSteepest Descent willgenerally converge only linearly tothesolution ,butitisglobal innature ,thatis,nearly anystarting value will give convergence .Asaconsequence ,itisoften used tofindsufficiently accurate starting approximations fortheNewton -based techniques . Themethod ofSteepest Descent determines alocal minimum foramultivariable func- tionoftheform g:R"-R.The method isvaluable quite apart from providing starting values forsolving nonlinear systems ,butwewillconsider only thisapplication . Theconnection between theminimization ofafunction from R"toRandthesolution ofasystem ofnonlinear equations isduetothefactthatasystem oftheform /l(*l.*2 *<)=0, /2(*l.*2 X„)=0,Thename fortheSteepest Descent method follows from the three-dimensional application of pointing inthesteepest downward direction . f n(X\,X2 X n)=0, hasasolution atx=(JCJ,*2,   .x„yprecisely when thefunction gfrom R"toRdefined by Xn)= .*n)]2g(x1,*2,.. » 1-1 hastheminimal value zero. Themethod ofSteepest Descent forfinding alocal minimum foranarbitrary function gfrom R"intoRcanbeintuitively described asfollows :  Evaluate gataninitial approximation p())=(pj0),p f\...,p<0))f.  Determine adirection from p(0)thatresults inadecrease inthevalue ofg.  Move anappropriate amount inthisdirection andcallthenewvalue p[).  Repeat thesteps with p(0)replaced byp11}. TheGradient ofaFunction Before describing howtochoose thecorrect direction andtheappropriate distance tomove inthisdirection ,weneed toreview some results from calculus .TheExtreme Value Theorem implies thatadifferentiable single -variable function canhave arelative minimum within Copyright 2012 Cengagc Learn in*.AIRight*Reversed Mayr*xbecopied.v.-aitned.o*implicated ,inwhole orinpar.Doctocjectronie rifhu.*wcthird pur.ycontent may besupplied rican theeBook and/orcChaptcnM .Editorial roiew h*> deemed CutanyMpprccscd content dce>notnuetlaXy afTcct theoverall learnire experience .Cette jpeLearn xiercsenn theright Mremove additional conceal atanytime i!vutoeqjrni right*rotrictiots require It.428 C H A P T E R 10 Systems ofNonlinear Equations The rootofgradient comes from theinterval only when thederivative iszero.Toextend thisresult tomultivariable functions , theLatin word gradi,meaning “towalk ”.Inthissense ,the gradient ofasurface istherateat which it“walks uphill ”.weneed thefollowing definition . Ifg:Rn-¥R,wedefine thegradient ofgatx=(*i,x2,..., Vg(x),by v*(x)=(S(x)’ The gradient foramultivariable function isanalogous tothederivative ofasingle variable function inthesense thatadifferentiable multivariable function canhave arelative minimum atxonly when thegradient atxisthezero vector. Thegradient hasanother important property connected with theminimization ofmul- tivariable functions .Suppose v=(uj,V2,...,vnYisavector inR”with ||v||2=1.The directional derivative ofgatxinthedirection ofvisdefined byS' d g *“’dx Dvg (x)=limi[g(x+h\)-g(x)]=v*Vg(x)=^^x)*d g i=l Thedirectional derivative ofgatxinthedirection ofvmeasures thechange inthevalue of thefunction grelative tothechange inthevariable inthedirection ofv. Astandard result from thecalculus ofmultivariable functions states thatthedirection thatproduces themaximum increase forthedirectional derivative occurs when vischosen inthedirection ofVg(x),provided thatVg(x)^0.Sothemaximum decrease will bein thedirection of—Vg(x).  Thedirection ofgreatest decrease inthevalue ofgatxisthedirection given by-Vg(x). SecFigure 10.2foranillustration when gisafunction oftwovariables . Figure 10.2 z Theobjective istoreduce g(x)toitsminimal value ofzero,sogiven theinitial approx - imation p(0),wechoose p'D_ p(0)_ QfVgCp '0*) (10.2) forsome constant a>0. Copyright 2012 Cc«£»fcLearn in*.AIR.(huReversed Mayr*xbecopied ,canned ,orduplicated.»whole ormpan.Doctoelectronic rifhu.vonte third pony content may besuppressed ftem theeBook and/orcCh deemed Cut artysuppressed content dees notimtetlaly affect theoverall teamireexperience .Cenitapc Learn xiprcsenn thenjht Mremove additional conceal atanytime i!suhvenjcni nphts restrictions require it429 10.4 TheSteepest Descent Method Theproblem now reduces tochoosing orsothatg(p!1})willbesignificantly lessthan g(p(0)).Todetermine anappropriate choice forthevalue or,weconsider thesingle -variable function *(«)=S(P<0)-aVg (p(0»)). Thevalue ofathatminimizes histhevalue needed forp=p(0)—aVg(p(0)). Finding aminimal value forhdirectly would require differentiating handthen solving aroot-finding problem todetermine thecritical points ofh.This procedure isgenerally too costly.Instead ,wechoose three numbers a\<0*2<«3that,wehope ,areclose towhere theminimum value ofh(a)occurs .Then weconstruct thequadratic polynomial P(x)that interpolates hatoq,«2»and 0*3.Wedefine ain[ct\,«3]sothatP(a)isaminimum in[a\,«3] anduseP(a)toapproximate theminimal value ofh(a).Then aisused todetermine the newiterate forapproximating theminimal value ofg: (0)-aVg (p(0>).(1)P'=p Since g(p,0))isavailable ,wefirstchoose a\=0tominimize thecomputation .Next a number 0*3isfound with h{a3)/1(0*1),then successive divisions of0*3by2areperformed and thevalue of**3isreassigned until /1(0*3) deemed Cutanysupprewed content doev notimtetlaly afTcct theoverall Ieamir .itexperience Ccnit jpeLearning roervev theright Mremove additional conceal atanytime i!vuhvajjcM nghtv rotrictions require It.430 C H A P T E R 10 Systems ofNonlinear Equations Solution Letg (xi,x2,x3)=[/i(x,,x2,x3)]2+[/2U1,x2,x3)]2+[/3U1,*2»X3)]2.Then =(2/,(X)^(X)+2/2(X)^(X)+2/3(X)^(X), V«(JT1,^2,*3)=Vg(x)3A:, 3AC, 3/, 3/2 3/32/,(x) (x)+2/2(x) (x)+2/3(x) (X).3*2 3X2 dx2 (x)j3/i 3/2 3/32/1(X)—(x)+2/2(x) (x)+2/3(X)9X3 9x3 9x3 =2J(x)'F(x). Forp0)=(0,0,0)',wehave 8(P(0))=/.(0,0,0)2+/2(0t0,0)2+/3(0,0,0)2 2 +(-81(0.01)+1.06)2+(^=111.975 , and Zo=l|Vg(p<0>)||2=l|2J(0)'F(0)||2=419.554 . Let 1z=-Vg(p(0>)=(-0.0214514 ,—0.0193062 ,0.999583 )'.zo With ai=0,wehave gi=g(pl0)-a\Z)=g(p<0))=111.975 .Wearbitrarily leta3=1 sothat (0)-a3z)=93.5649 . S3=s(p Because deemed Cutanyvuppicwed content doev notimtctlaly alTect theoverall learning experience .Ceng age[.cammgroentt theright 10remote additional conceal atanytime ifsubvoyjem nght >rotrictionv requite It431 10.4 TheSteepest Descent Method so P\a)=801.874 a-419.346 and P(a)=0when a=oro=0.522959 .Since g(p<0)-a0z)=2.32762 issmaller than g]and#3,weset p<'>=p<°>-a0z=p<0)-0.522959 Z=(0.0112182 ,0.0100964 ,-0.522741 )I and g(p(,))=2.32762 . Table 10.3contains theremainder oftheresults .Atruesolution isp=(0.5,0,-0.5235988 )', sop'2)would likely beadequate asaninitial approximation forNewton ’smethod or Broyden ’smethod .One ofthese quicker converging techniques would beappropriate atthisstage because 70iterations oftheSteepest Descent method arerequired tofind llp(*>-Plloo <0.01. Table 10.3k_(*)Pi P?>_ <*>P) 2 0.137860 0.266959 0.272734 0.308689 0.314308 0.324267-0.205453 0.00551102-0.00811751-0.0204026-0.0147046-0.00852549-0.522059-0.558494-0.522006-0.533112-0.520923-0.5284311.27406 1.06813 0.468309 0.381087 0.318837 0.2870243 4 5 6 7 EXERCISE SET 10.4 l. Use themethod ofSteepest Descent toapproximate asolution ofthefollowing nonlinear systems , iterating until||plA)—plt_,)||oc<0.05. 1Ax]-20x,+-xf+8=0 5x2+8=0a. 1-x\x$+2xi- 3*?-4 3*,xf-*,3-1=0 c.ln(xf+x\)—sin(xiX 2>=In2+ln;r e*i~*2+cos(xi*2)=0 sin(47rxijc 2)—2JC2 x\=0 (e2*1-e)4-Aex\-2ex\=0 Usetheresults inExercise 1andNewton ’smethod toapproximate thesolutions ofthenonlinear systems inExercise 1,iterating until||p(A)-p(i_ l>||oc<10~6.b. =0 d. (TT) 2. Copyright 2012 Cengagc Learning .AIRights Reversed May notbecopied ,canned ,orduplicated .inwhole orinpar.Doctoelectronic rights.xvtic third pur.ycontent may bevuppreved riom theeBook amtar cCh deemed Cutanysuppressed content does nottnaxrUXy alTcct theoverall learning experience .Collage [.cammereserve*theright*>rerrxyve additional conteatatanytime iisubseqjcnt right*restrictions require It432 CHAPTER 10 Systems ofNonlinear Equations 3. Use themethod ofSteepest Descent toapproximate asolution ofthefollowing nonlinear systems , iterating until \\p(k)-p(*_1)||oc<005. a.15*i+*2“4*3=13 *f+10*2_*3=11 x\-25*3=—22 C.*^-fx]x2—*1*3+6=0 exi+e**-x3=0 x\—2*1*3=410*i—2*|+*2—2*3—5=0 8*|+4*f-9=0 8*2*34"4=0b. *i4-cos(*i*2*3)-1=0 (1-*,),/4+*2+0.05*3-0.15 JC3-1=0 —x\—0.1*1+0.01*2+*3—1=0 Use theresults ofExercise 3andNewton ’smethod toapproximate thesolutions ofthenonlinear systems inExercise 3,iterating until||p|A>—p'*“,)||00<106. Use themethod ofSteepest Descent toapproximate minima forthefollowing functions ,iterating until flp(4)-pt*~,)||00<0.005 . a.g(xt,x2)=cos(x,4-*2)4-sin*,4-cos*2 b.g(*i,*2)=100(*f-*2)24-(1-*i)2 c.g(*i,*2,*3)=*2+2x\4-*2-2*,*2+2*i-2.5*2-*34-2 d.g(*j,*2,*3)=*44~2*44"3*44"1.01 a.Show thatthequadratic polynomial thatinterpolates thefunction h(a)=s(p,0)-aVg (p(0>»d. 4. 5. 6. ator=0,a2,anda3is P(a)=g(p(0))4-h\a4-/i3or(a-or2) where g(p<0)-a2z)-g(p0))ha2 g(p<0>—a3z)—g(p<0)—ar2z) h2-h i,and A3= h2=a3-a2 b.Show thattheonly critical point ofPoccurs atoro=0.5(or2—/11//13).«3 — 10.5 Homotopy andContinuation Methods Homotopy ,orcontinuation ,methods fornonlinear systems embed theproblem tobesolved within acollection ofproblems .Specifically ,tosolve aproblem oftheform F(x)=0, which hastheunknown solution p,weconsider afamily ofproblems described using a parameter kthatassumes values in[0,1].Aproblem with aknown solution x(0)corresponds tok=0,andtheproblem with theunknown solution x(l)=pcorresponds tok=1. Suppose x(0)isaninitial approximation tothesolution pofF(x)=0.Define G:[0,1]xR" R" by G(k,x)=*F(x)4-(1-k)[F(x)-F(x(0))]=F(x)4-(k-l)F(x(0)). Copyright 2012 Cengagc Learn in*.AIRights Reversed Mayr*xbecopied.scanned .ocimplicated ,inwhole orinpar.Doctocjectronie rights.some third pur.yCOMCK may besupplied rican theeBook and/orcChapccriM .Editorial review h*> deemed Cutanysuppressed content does nottnaxrUXy alTcct theoverall learning experience .('engage [.camonreserves theright 10remove additional eonteatatanytime ifsubsequent nghts restrictions require It