C H A P T E R Systems ofNonlinear Equations 10.1 Introduction Alarge partofthematerial inthisbook hasinvolved thesolution ofsystems ofequations . Even so,tothispoint themethods have been appropriate only forsystems oflinear equations , equations inthevariables xi,x2,...,xnoftheform at\X\+ai2x2+   +ainxn=b{ fori=1,2,...,n.Ifyou have wondered why wehave notconsidered more general systems ofequations ,thereason issimple .Itismuch harder toapproximate thesolutions toasystem ofgeneral ,ornonlinear ,equations . Solving asystem ofnonlinear equations isaproblem thatisavoided when possible , customarily byapproximating thenonlinear system byasystem oflinear equations .When thisisunsatisfactory ,theproblem must betackled directly .Themost straightforward method ofapproach istoadapt themethods from Chapter 2thatapproximate thesolutions ofasingle nonlinear equation inonevariable toapply when thesingle -variable problem isreplaced byavector problem thatincorporates allthevariables . The principal tool inChapter 2wasNewton ’smethod ,atechnique thatisgenerally quadratically convergent once asufficiently accurate starting value isfound .This isthe first technique wemodify tosolve systems ofnonlinear equations .Newton ’smethod ,as modified forsystems ofequations ,isquite costly toapply ,so,inSection 10.3,wedescribe howamodified Secant method canbeused toobtain approximations more easily ,although with alossoftheextremely rapid convergence thatNewton ’smethod provides . Section 10.4 describes themethod ofSteepest Descent .This technique isonly linearly convergent ,butitdocs notrequire theaccurate starting approximations needed formore rapidly -converging techniques .Itisoften used tofindagood initial approximation for Newton ’smethod oroneofitsmodifications . InSection 10.5,wegiveanintroduction tocontinuation methods ,which useaparameter tomove from aproblem with aneasily determined solution tothesolution oftheoriginal nonlinear problem . Asystem ofnonlinear equations hastheform /l(*l.*2.   ,X n)=0, MX\,x2,   1x„)=0, f n(X|»X2t...9X f i)—0, where each function fcanbethought ofasmapping avector x=(xj,x2t...,x„)1of then-dimensional space R”intothereallineR.Ageometric representation ofanonlinear system when n=2isgiven inFigure 10.1. 413 Copyright 20I2Cengagc Learning .AIR.ghu Reserved May rscabecopied .scanned .orduplicated .'»whole ormpan.Doc toelectronic rights .tone third party concent nu>besupprcsxd Trent theeBook and/oreChaptcnM .Editorial review h*> deemed tutany vupprc'-cdcontent dee *,notmaterials affect theoverall learning experience .Ceng ageLeant ngreverses theright torerrx'sradditional conceal atanytime ifsubvcijjcti nglas restrictions require it.414 CH A PTER 10 Systems ofNonlinear Equations Figure 10.1 Z=Mxl,x2) z=/,(*„*2) I *2 /I(XI,x2)=0and/2(xi**2)-0 *1 Ageneral system ofnnonlinear equations innunknowns canbealternatively repre - sented bydefining afunction F,mapping R"intoR",by F(*1.*2 X n)=(/l0*1.*2 *„)M*\*2 */>) M*l,x **))' Ifvector notation isused torepresent thevariables x\,x2,...,xn %thenonlinear system assumes theform F(x)=0. Thefunctions /1,/2,...,/„ar eth ecoordinate functions o fF. Example 1Place the3x3nonlinear system 1-COS(*2*3)“- x2—81(JC2+0.1)24-sin;t34-1.06=0, 10;r—33JCJ =0, e*1*2_ j_20x34- =03 intheform F(x)=0. Solution Define thethree coordinate functions /1,/2,and/3from R3toRas 1Mxi ,x2,xj)=3A:1—cos(x2X3)- fiixuX 2%xi)=x]-81(JC24-0.1)2+sin*34-1.06, 107 T—3Mxux 2,A:3)=eX'X24-20A:34-3 Copyright 2012 Certfajc Learn in*.AIRights Reserved Mayr*xbecopied.scanned .ocdedicated.»whole oempan.Doc 10electronic rights.some third pony concern.may besuppreved riom theeBook and/wcCh deemed Cutanysuppressed content does notmaterial yalTcct thei>vera'.llearning experience .Cettgagc [.camonreserves theright toremove additional conteatatanytime ifsubsequent rights restrictions require IL415 10.1 Introduction Then define Ffrom R3—R3by F(x)=F(jr,,JT2,x3) =(/l(*i.x2,*3).h(x\,x2,x3),f3(x,,x2,x3))' =(3*1-cos(*2*3)-L x 10r1)']-81(JC2+0.1)2-I-sin JC3+1.06 ,e’*1*2+20x3 Theoriginal system isequivalent toF(x)=0. Before discussing thesolution ofasystem ofnonlinear equations ,weneed some results concerning continuity anddifferentiability offunctions from R"intoRand Rninto Rn. These results parallel those given inSection 1.2forafunction from RintoR. Let/beafunction defined onasetDcR"andmapping R”intoR.Thefunction / hasthelimit LatXo,written lim/(x)=L, X-**U if,given anynumber e>0,anumber 8>0exists with theproperty that |/(x)-L\ deemed Cutanyvuppicwcd content dec*notimtetlaly alTcct theoverall Icamir .itexperience .Cc»i|tape[.cannon rexxvcv therljtlu 10renxyve additional conteatatanytime iivutoeqjcni nphtv restriction*require It416 C H A P T E R 1 0 Systems ofNonlinear Equations 10.2 Newton 'sMethod forSystems Newton ’smethod forapproximating thesolution ptothesingle nonlinear equation fix)=0 requires aninitial approximation potopandgenerates asequence defined by f(P k-i) f(p k-i)’fork>1. Pk=Pk-1- Tomodify Newton ’smethod tofindthevector solution ptothevector equation F(x)=0, wefirstneed todetermine aninitial approximation vector p(0).Wemust then decide how to modify thesingle -variable Newton ’smethod toavector function method thatwillhave the same convergence properties butnotrequire division because thisoperation isundefined forvectors .Wealso need toreplace thederivative of/inthesingle -variable version of Newton ’smethod with something thatisappropriate forthevector function F. TheJacobian Matrix The derivative /'(*)ofthesingle -variable function /(*)describes how thevalues ofthe function change relative tochanges intheindependent variable x.The vector function Fhas ndifferent variables ,x\9*2»   >xnyandndifferent component functions ,/i,/2,...,/n, each ofwhich canchange asanyoneofthevariables change .Theappropriate derivative modification from thesingle -variable Newton ’smethod tothevector form must involve all these nlpossible changes ,andthenatural waytorepresent n2items isbyannxnmatrix . Each change inacomponent function fatxwith respect tothechange inthevariable xj isdescribed bythepartial derivative V(x),dxj andthenxnmatrix which replaces thederivative thatoccurs inthesingle -variable case is d f i,va/, a/.(x) (x)    (x) dxi dx2 dxn a/2 a/2 a/2(x)    7^(X) (X) dxi dx2 dxn Thematrix J(x)iscalled theJacobian matrix andhasanumber ofapplications inanalysis .It might ,inparticular ,befamiliar duetoitsapplication inthemultiple integration ofafunction ofseveral variables over aregion thatrequires achange ofvariables tobeperformed . Newton ’smethod forsystems replaces division bythederivative inthesingle -variable case with multiplying bytheinverse ofthenxnJacobian matrix inthevector situation . Asaconsequence ,Newton ’smethod forfinding thesolution ptothenonlinear system of equations represented bythevector equation F(x)=0hastheform P<*>=P(*_,)-Uip(*-I))rlF (P(*-I>), given theinitial approximation pimtothesolution p.^(x)...3f'^(x)dx2 dxn fork>1, Copyright 2012 Cenfajc Learn in*.AIR.(huRocncd May n«becopied ,canned ,o*implicated ,inwhole orinpar.Doctocjectronie rifhu.*wcthird pur.ycontent may besupplied rican theeBook and/orcChaptcnM .Editorial roiew h*> deemed CutanyMpprccscd content dce>notnuetlaXy afTcct theoverall learnire experience .Cenitape [.camon roenti theright Mremove additional conceal atanytime i!vuhvcyjcm nghtv rotrictiots require It.417 10.2 Newton 'sMethod forSystems Aweakness inNewton ’smethod forsystems arises from thenecessity ofinverting thematrix J{p{*-,))ateach iteration .Inpractice ,explicit computation oftheinverse of y(p(*-0)isavoided byperforming theoperation inatwo-stepmanner .First,avector y(*-,) isfound thatwillsatisfy Theprogram NWTSY 101 implements Newton ’s method forsystems of nonlinear equations .J(p<*-,))y(*“,)=—F(p(*-1)). After thishasbeen accomplished ,thenewapproximation ,p(*\isobtained byadding y(*_,) top(A_ I). Example 1Thenonlinear system 13*1-cos(*2*3)-2 *f-81(*2+0.1)2+sin*3+1.06=0, IOTT-3=0, +20*3+ =03 hastheapproximate solution (0.5,0,-0.52359877 )'.Apply Newton ’smethod tothisprob- lemwith p(0)=(0.1,0.1,-0.1)'. Solution Define F(*i,*2»*3)=(/l(*l,*2,*3),/2(*1.*2.*3),M*UX2,Xi)y, where 1/l(*l,*2,*3)=3*1-cos(*2*3)- /2(*1,*2,*3)=x i-81(*2+o.l)2+sin*3+1.06 , and I O TT-3MXUX 2,*3)=eX'X2+20*3+3 TheJacobian matrix J(x)forthissystem is 3 *3sin*2*3*2sin*2*3 —162(*2-F0.1) cos*3-x,*27(*, *2»*3)= 2*. 20—x2e~x'X2-x\e Forp1)1=(0.1,0.1,-0.1)'wehave F(p<0))=(-0.199995 ,-2.269833417 ,8.462025346 )' and 9.999833334 x10“49.999833334 x10“41-32.43 J(p(0))= 0.2 0.9950041653 -0.09900498337 -0.09900498337 20 Solving thelinear system 7(p(0))y(0)=-F(p(0))gives 0.4998696728 0.01946684853-0.52152047180.3998696728-0.08053315147-0.4215204718(0)_and p(,)=p(0)+y(0)=y Copyright 2012 Cerifapc Learn in*.AIRights Reversed May rotbecopied.scanned.ocdedicated.»whole oempan.Doc 10electronic rights.some third pony content may besuppreved rrom theeBook andtor cCh deemed Cutanysuppressed content does notmaterial yalTcct theoverall learning experience .Cenitape l.camopreserves theright 10remove additional conceal atanytime i isubseqjrni rights restrictions require It418 C H A P T E R 10 Systems ofNonlinear Equations Continuing fork=2,3,...,wehave (*)i (*-!)“  (*-!)'Pi P1^1 (A) (A-l) (*-l)+ P1 P i y i (A) (A-1) (A-l) -P3- LP3 L>3 where -(A-n- (A—1) (A—1) (A—1) (A-l)(A—1)\ *P3)*(A-l)i J{P l ’P i ’P i y i (A-l)^3 Atthek\hstep ,thelinear system J(p i k]))y{k!)=—F(p(*_,))must besolved ,where pt')Pr')pry cosp<*-'> -162(pf*1)+0.l) ,,(*-l)„(*-l)e~p\p23 (A-l)J(ptt-w2p! )= (A-l)_(*-!)r P t X)e-p' -y(k-i y y?-l). -(A-l)(A-l)20 -Pi y(A-D_ and 3p“-° F(p(*-'>)=(p{*_ l>)2-8l(p2*-1>+0.1)2+sinpf_l>+1.06 n(A-l)(A-l)^„e~P\ P2+20/?3 Theresults using thisiterative procedure areshown inTable 10.1 .-cospfr-V'M 1 (A-l) IO.T-3 Table 10.1*(A) (A) (A)llp(A)-p'A-Dloc P i P ip> 0 0.1000000000 0.4998696728 0.5000142403 0.5000000113 0.5000000000 0.50000000000.1000000000 0.0194668485 0.0015885914 0.0000124448 8.516 x10-'°-1.375 x10"n-0.1000000000-0.5215204718-0.5235569638-0.5235984500-0.5235987755-0.52359877560.4215204718 1.788 x10“2 1.576 x10"3 1.244 x105 8.654 xlO"101 2 3 4 5 Theprevious example illustrates thatNewton ’smethod canconverge very rapidly once anapproximation isobtained thatisnear thetruesolution .However ,itisnotalways easy todetermine starting values thatwilllead toasolution ,andthemethod iscomputationally expensive .Inthenext section ,weconsider amethod forovercoming thelatter weakness . Good starting values canusually befound bythemethod discussed inSection 10.4 . Copyright 2012 Cengagc Learn in*.AIRights Reversed May rotbecopied ,canned ,ocimplicated ,inwhole orinpar.Doc tocjectronie rlghtv .some third pur.ycontcir .may besupplied rican theeBook and/orcChapccriM .Editorial review h*> deemed Cutany suppic-edcontent does notmaterial yalTcct theoverall learning experience .('engage [.cammureserves theright 10remove additional conteat atanytime ifsubvcqjem nghtv restrictions require IL419 10.2 Newton 'sMethod forSystems E X E R C I S E S E T 10.2 Give anexample ofafunction F:R2—R:thatiscontinuous ateach point ofR:except at(1,0). Give anexample ofafunction F:R3-R3thatiscontinuous ateach point ofR3except at(1,2,3). UseNewton ’smethod with p0)=0tocompute pforeach ofthefollowing nonlinear systems .1. 2. 3. 14x2-20x,+-*f+8=0,\.*\x\+2xi-5X2+8=0. sin(47rx,x2)-2x2—Xi=0, (e2*1—e)+Aex;—2ex\=0. 3x,-cos(x2x3)- ^=0, Ax]-625xf+2*2-1=0, IOTT-3a. b. (^) d.x]+*2 *,-x\ *1+*2+*3-3=0.-37=0,-5=0,c. e-*l*2+20*3+ =0.3 4. UseNewton ’smethod tofindasolution tothefollowing nonlinear systems inthegiven domain .Iterate until ||p(t)-p(*_ 1)|l3o<10-6. 3*?—*2=0, 3*i*J—*3—1=0. Usep(0)=(1,l)1.b.ln(xf+*2)-sin(*!*2)=In2+lnrr, ex'~*2+cos(*i*2>=0. Usep(0)=(2,2)'.a. C. X]+*f*2—*1*3+6=0, e*'+e*'-*3=0, x;—2*1*3=4. Usep(0)=(—1,—2,1)'. Thenonlinear system6*!—2cos(*2*3)—1=0, 9*2+y/x]+sin*3+1.06+0.9=0, 60*3+3e_ JI|Jt2+107r—3=0. Usep(0)=(0,0,0)'.d. 5. *f-*2+2*2=0, 2*,+xf-6=0. hasfour solutions .They arenear (—5,-4)',(2,—1)',(0.5,2)',and(—2,3)'.Usethese points as initial approximations forNewton ’smethod anditerate until||p(4)-pk-,)||x<10'6.Dotheresults justify using thestated points asinitial approximations ? Thenonlinear system 6. 2x\—3*2+*3—4=0, 2*i+*2—*3+4=0, x]+*|+x\-4=0. hasasolution near (—0.5,—1.5,1.5)'. a.Usethispoint asaninitial approximation forNewton ’smethod anditerate until llp^—plk_,)|loc< io-6. b.Solve thefirst twoequations for X\and*3interms of*2. c.Substitute theresults of(b)intothethird equation toobtain aquadratic equation in*2. d.Solve thequadratic equation in(c)bythequadratic formula . e.Ofthesolutions in(a)and(d),which iscloser totheinitial approximation (-0.5,-1.5,1.5)'? Copyright 2012 Cc«£»fcLearn in*.AIR.(huReversed Mayr*xbecopied ,canned ,ocdaplicated.»whole oempan.Doctoelectronic rifhu.vonte third pony content may besuppressed rrom theeBook and/orcClupccnM .Editorial roiew h*> deemed Cutanysuppressed content dees notimxttaly alTect theoverall leamir*experience .Ccfiitapc Learn xipreserves thert|>lttloremose additional conceal atanytimeiisubseqjcot rights restrictions require It.420 C H A P T E R 1 0 Systems ofNonlinear Equations 7. Thenonlinear system l-COS(*2X3)~-=0, x?-625*f-\=°. IOTT-33*, e~*1*2+20*3+ =03 hasasingular Jacobian matrix atthesolution .Apply Newton ’smethod with p*0)=(1,1—1)'.Note thatconvergence may beslow ormay notoccur within areasonable number ofiterations . The nonlinear system 8. 4*1-*2+*3=*1*4, -*1+3*2-2*3=*2*4, *1-2*24-3*3=*3*4, *!+*!+*!=i hassixsolutions . a.Show thatif(xj,x2,*3,x4)'isasolution ,then (-*,,-x2,-*3,x4)'isasolution . b.UseNewton ’smethod three times toapproximate allsolutions .Iterate until  p<)—pA_l)||.< 105.Usetheinitial vectors (1,1,1,1)',(1,0,0,0)',and(1,-1,1,-1)'. LetAbeannxnmatrix andFbethefunction from R"toR"defined byF(x)=Ax.What isthe Jacobian matrix ofF? InExercise 6ofSection 5.7,weconsidered theproblem ofpredicting thepopulation oftwospecies thatcompete forthesame food supply .Intheproblem ,wemade theassumption thatthepopulations could bepredicted bysolving thesystem ofequations9. 10. dx 1(0=x,(r)(4-0.0003*i(r)-0.0004*2(r»dt and dx2(0=*2(0(2-0.0002 *,(0-0.0001 *2(r)).dt Inthisexercise ,wewould like toconsider theproblem ofdetermining equilibrium populations of thetwospecies .Themathematical criteria thatmust besatisfied inorder forthepopulations tobeat equilibrium isthat,simultaneously , dx.(0=0and^(/)=0.dt dt This occurs when thefirstspecies isextinct andthesecond species hasapopulation of20,000or when thesecond species isextinct andthefirstspecies hasapopulation of13,333.Cananequilibrium occur inanyother situation ? The amount ofpressure required tosink alarge ,heavy object inasofthomogeneous soilthatlies above ahard base soilcanbepredicted bytheamount ofpressure required tosink smaller objects inthesame soil.Specifically ,theamount ofpressure prequired tosinkacircular plate ofradius ra distance dinthesoftsoil,where thehard base soilliesadistance D>dbelow thesurface ,canbe approximated byanequation oftheform11. p=kxek2r+*3r, where k\,ki,and*3areconstants ,withki>0,depending ondandtheconsistency ofthesoilbut notontheradius oftheplate. Copyright 2012 Cengagc Learn in*.AIRights Reserved Mayr*xbecopied.scanned .oeimplicated ,inwhole orinpar.Doctocjectronie rights.some third pur.ycontent may besuppreved rrom theeBook and/orcChapccmi .Editorial review h*> deemed Cutany MJPPIC-CVJcontent does notmaterialy alTcct theoverall Icamir*experience .Ceagage [.cammu reserves theright*>remove additional conceal atanytime ifvutoeqjeni nghtv restrictions require It421 10.3 Quasi-Newton Methods a.Find thevalues ofk\,k2,and &3ifweassume thataplate ofradius 1in.requires apressure of 10lb/in.2tosink 1ftinamuddy field ,aplate ofradius 2in.requires apressure of12lb/in.2to sink1ft,andaplate ofradius 3in.requires apressure of15lb/in.2tosinkthisdistance (assuming thatthemud ismore than 1ftdeep ). b.Useyour calculations from (a)topredict theminimal sizeofcircular plate thatwould berequired tosustain aload of500lbonthisfield with sinkage oflessthan 1ft. 10.3 Quasi -Newton Methods Asignificant weakness ofNewton ’smethod forsolving systems ofnonlinear equations istherequirement that,ateach iteration ,aJacobian matrix becomputed andannxn linear system solved thatinvolves thismatrix .Toillustrate themagnitude ofthisweakness , consider theamount ofcomputation associated with oneiteration ofNewton ’smethod . TheJacobian matrix associated with asystem ofnnonlinear equations written intheform F(x)=0requires thatthen2partial derivatives ofthencomponent functions ofFbe determined andevaluated .Inmost situations ,theexact evaluation ofthepartial derivatives isinconvenient ,andinmany applications itisimpossible .This difficulty cangenerally be overcome byusing finite-difference approximations tothepartial derivatives .Forexample , fj(x+het)-fj(x)BJl(x)^dxk h where hissmall inabsolute value ande*isthevector whose only nonzero entry isa1in thek\hcoordinate . This approximation ,however ,stillrequires that atleast n2scalar functional evalua - tions beperformed toapproximate theJacobian matrix anddocs notdecrease theamount of calculation ,ingeneral 0(n3),required forsolving thelinear system involving thisapprox - imate Jacobian .The total computational effort forjustoneiteration ofNewton ’smethod is,consequently ,atleastr+nscalar functional evaluations (n2fortheevaluation ofthe Jacobian matrix andnfortheevaluation ofF)together with0(n3)arithmetic operations to solve thelinear system .This amount ofcomputational effort canbeprohibitive except for relatively small values ofnandeasily -evaluated scalar functions . Inthissection ,weconsider ageneralization oftheSecant method tosystems ofnon- linear equations ;inparticular ,atechnique known asBroyden ’smethod (see[Broy ]).The method requires only nscalar functional evaluations periteration andalso reduces the number ofarithmetic calculations to0(n2).Itbelongs toaclass ofmethods known as least-change secant updates thatproduce algorithms called quasi -Newton .These methods replace theJacobian matrix inNewton ’smethod with anapproximation matrix thatisup- dated ateach iteration .Thedisadvantage tothemethod isthatthequadratic convergence ofNewton ’smethod islost.Itisreplaced bysuperlinear convergence ,which implies that llp(,>1)-pll i^*oo||p('>—pH where pdenotes thesolution toF(x)=0,andp1r>andp+11areconsecutive approximations top.Inmost applications ,thereduction tosuperlinear convergence isamore thanacceptable trade -offforthedecrease intheamount ofcomputation . Anadditional disadvantage ofquasi -Newton methods isthat,unlike Newton ’smethod , theyarenotself-correcting .Newton ’smethod ,forexample ,willgenerally correct forround - offerror withsuccessive iterations ,butunless special safeguards areincorporated ,Broyden ’s method willnot.lim Copyright 2012 Cengagc Learn in*.AIR.phtsReserved Mayr*xbecopied ,canned ,oeduplicated.»whole o tmpan.Doctoelectronic rights.some third pony content may besuppressed ftem theeBook and/orcClupccris !.Editorial review h*> deemed Cut artysuppressed content decs notmaterial'.yafTcct theoverall learnire experience .Cenitape Learning reserves theright Mremove additional conceal atanytime i!subseqjrnt right*restrictions require It.4 2 2 C H A P T E R 1 0 »Systems ofNonlinear Equations Todescribe Broyden ’smethod ,suppose thataninitial approximation p(0)isgiven to thesolution pofF(x)=0.Wecalculate thenext approximation p(,)inthesame manner as Newton ’smethod ,or,ifitisinconvenient todetermine J(p<0))exactly ,wecanusedifference equations toapproximate thepartial derivatives .Tocompute pl2),however ,wedepart from Newton ’smethod andexamine theSecant method forasingle nonlinear equation .The Secant method differs from Newton ’smethod because ituses f(pi)-fipo )/'(Pi)*Pi-Po instead of/'(pi).Fornonlinear systems ,p"—p(0)isavector ,and thecorresponding quotient isundefined .However ,themethod proceeds similarly inthatwereplace thematrix J(p1!))inNewton ’smethod byamatrix A\with theproperty that A,(pf>-p<°>)=F(p<‘>)-F(p<°>). Any nonzero vector inRncanbewritten asthesum ofamultiple ofp1)—p(0)anda multiple ofavector orthogonal top(l)—p(0).So,touniquely define thematrix Aj,weneed tospecify how itactsonvectors orthogonal top1"—p(0). Noinformation isavailable about thechange inFinadirection orthogonal top11}—p(0), sowesimply require thatnochange occurs when defining A\.That is, A\Z=7(p(0))zwhenever (p(1)—p(0))'z=0. Thus anyvector orthogonal top(I)-p(0)isunaffected bytheupdate from 7(p(0)),which wasused tocompute p",toA],which isused inthedetermination ofp(2). These conditions uniquely define A\(seeExercise 8)as [F(P<»)-F(p<°>)-y(p(0))(p">-p(0)>] At=/(p<0))+ (p<»_p(0))'. (10.1) IIP(I)—P<0)lll Itisthismatrix thatisused inplace ofJ(p,l))todetermine p(2): p(2)=p(i)_A-»F(p(,)). Once p(2)hasbeen determined ,themethod canberepeated todetermine p(3),with A\ used inplace ofAo=./(p(0))andwith p(2)andp"inplace ofp"andp(0),respectively . Tosimplify thenotation weintroduce thevariables and y,=F(p(,))-F(pu~l)). Then ,once p"hasbeen determined ,p'+l)canbecomputed bys,=p<'>-p"-1* [F(ptf))~F(pg-»)]-Aj-i(p(l^-ptt-”)_p(l_ 1)y A,=A,_j+iip(.)-p(‘-»ni —A,iS/ _ A ,y<—A,_ iH s. Us,ill and p0+»=p(O_ Ar,F(p(.)). Ifthemethod isperformed asoutlined ,thenumber ofscalar functional evaluations is reduced fromn2+nton(those required forevaluating F(p(,))),butthemethod stillrequires 0(n3)calculations tosolve theassociated nxnlinear system AjSi+i=-F(p“’). Copyright 2012 Cc«£»fcLcarnin*.AIRighb Reversed May notbecopied .canned ,ocduplicated.»whole oempar.Doc 10electronic itfhu .some third puny content may besuppreved rrom theeBook and/orcCh deemed Cut ait)suppicwcd conteendoev notimxtlily alTcct theiAcra .lteamireexperience .Ccngjgc Learn rornct thenjht Mremove additional conceal atanytime i!vubveqjcnt nythav rcvtrictionc require It.423 10.3 Quasi -Newton Methods Employing themethod inthis form would notbejustified because ofthereduction to superlinear convergence from thequadratic convergence ofNewton ’smethod .However ,a significant improvement canbeincorporated byemploying amatrix -inversion formula . Sherman -Morrison Formula Sherman -Morrison Formula IfAisanonsingular matrix andxandyarevectors with y'A*x^—1,then A+xy' isnonsingular and -lA~’xy'A lTy'A^x' (A+xy')-1=A-1 This formula permits A"1tobecomputed directly from A-leliminating theneed foramatrix inversion with each iteration .This computation involves only matrix -vector multiplication ateach step andtherefore requires only0(n2)arithmetic calculations . Byletting A=A,_i,x=(y *-A,_iSl)/||sl||§,andy=s,,theSherman -Morrison formula implies that»-i» -l( )y.-Aj.js,A"1si A,_i+ ills,II; ) (y,--Ai_,s, -1 -1S'A^i-i /-lMl -1=Ai-1“ ( )y i-A^S il+s'A.Ji IISill2 (A-^y,-s,)s'A-1 1-1=A(-J,-||s,Hi-t-s'A.Jjy,-||s,||| (s,-Viy.)»iA-1 1-1 -1Theprogram BROYM 102 implements Broydcn ’s method .=Ai-lsJA-^y, Thecalculation ofA,-isbypassed ,asisthenecessity ofsolving thelinear system . Example 1Use Broyden ’smethod withp(0)=(0.1,0.1,-0.1)'toapproximate thesolution tothe nonlinear system 13*!-COS(*2*3)“-=0, x2-81(*2+0.1)2+sinx 3+1.06=0, 10TT-3e~x'X2+20X3+ =0.3 Solution This system wassolved byNewton ’smethod inExample 1ofSection 10.2 .The Jacobian matrix forthissystem is 3 *3smX 2^3 162(JC2+0.1)-x\X2X2sm X2X3 COS*3 2x, J(x1,X2,X3)= 20 -or1*2 -x2e -xxe Copyright 2012 Cenfajc Lcarnin*.AIRighb Reversed May notbecopied ,canned ,ordaplicatod .»whole oempar.Doctoelectronic ilfhu.xvtic third pur.ycontent may besuppreved Tiom theeBook and/orcCh deemed Cutanyvuppicvvcd content doev nottmxtlaly alTect theoverall Icamir .itexperience .C'cnitasc[.camon reserve*therljtlu toremote additional concert atanytime i ivubveqjcnt rights rotrictionv require It424 C H A P T E R 10 Systems ofNonlinear Equations Letp(0)=(0.1,0.1,—0.1)'and F(*i.*2.*3)=(/i(-*1.*2.*3)1/2(^1.*2.-*3).M X U X 2,x3))', where 1f](x1,JC2,X3)=3*i-cos(x2*3)-2» /2(^1»^2.^3)=x]-81(^2+0.1)2+sinx 3+1.06 , and 10TT-3 *2.*3)=e~x'X2+20*3+3 Forp0)=(0.1,0.1,-0.1)'wehave "—1.199950 F(p(0))=-2.269833 8.462025 This implies that A0=y(p(0)) -9.999833 x10"4‘ 0.99500429.999833 x10"4 -32.4-9.900498 x10"23 0.2-9.900498 x10"220 Forthisfirst iteration ,weneed tofind theinverse of(./(p(0))).However ,forsubsequent iterations ,matrix inversion isnotnecessary .Wehave At'=j(p?\p?\pfr' 0.3333332 =2.108607 xlO"3 1.660520 xlO"31.615701 xlO"5' 1.535836 xlO’3 5.000768 x10~21.023852 x10"5 -3.086883 x10"2 -1.527577 xlO”4 So 0.4998697 1.946685 xlO'2,-0.5215205p(l)_p(0)_ ^-^(p^0))= -3.394465 x10~4’ -0.3443879 3.188238 x10~2F(p(,))= 1.199611' 1.925445 ,-8.430143y,=F(p(1))-F(p(0))= 0.3998697-8.053315 xlO"2,-0.4215204s,= Copyright 2012 Ce«£»fcLcirni #*.AIRighb Reversed May n«becopied ,canned ,ordaplicatod .»whole oemport.Doctoelectronic ilfhu .xxtic third pur.ycontent may besuppteved riom theeBook and/orcCh deemed Cutanyvuppicvvcd etnteni dec>notimxttaly alTect theoverall leamir*experience .C'cnitasc[.camonrexrvcv thert|>ht10remote additional conteatatanytime iivubveqjcnt ngh*vroirictionv require It425 10.3 Quasi-Newton Methods s'Ao'yi=0.3424604 , V=V+1[(Sl-Vy.K>V] 1.11050 x10-5 -3.094849 x10“2 -1.650709 x10-40.3424604 0.3333781-2.021270 x10"3 1.022214 x10-38.967344 x10~6‘ 2.196906 x10“3, 5.010986 x10-2 and 0.4999863 8.737833 x10"3 -0.5231746(2)=p(i>-AriF(P(i>)= p Additional iterations arelisted inTable 10.2.The5thiteration ofBroyden ’smethod is slightly lessaccurate than wasthe4thiteration ofNewton ’smethod given intheexample attheendofthepreceding section . Table 10.2k(*) (*>(A) ||p(A)_ p(*-l)||2 P1 Pi Pi 0 0.1000000 0.4998697 0.4999864 0.5000066 0.5000003 0.50000000.1000000 1.946685 x102 8.737839 x10"3 8.672736 x10 3.952827 x105 1.934342 x10-0.1000000-0.5215205 -0.5231746 -0.5235723-0.5235977 -0.5235988-l1 5.93 x10 1.0856 x10"2 7.8806 x10~3 8.2817 x104 3.9351 x10"52 43 4-75 E X E R C I S E S E T 10.3 UseBroyden ’smethod with plD)=0tocompute pl?)foreach ofthefollowing nonlinear systems . 1. 14xf-20x[-I--x\+8= ^*1*24*2xt—5X24-8=0. sin(4;rxix 2)—2x2—X\=0,0, a. b. -e)4-4ex\—2ex\=0.i 13*i-cos(x2*3)--=°. 4*2_625x24-2*,-1=0,c. 1e~x'x*+20*34--(IOTT-3)=0. xf4-*2 *,-*| *,4-*24-*3-3=0. UseBroyden ’smethod toapproximate solutions tothenonlinear systems inExercise 1using the following initial approximations p,u>until||p‘1-pa-I)||00<10~6. (1»1»l)f-3 7=0,-5=0,d. 2. a.(0,0)' d.(2,i,-i y b.(0,0)' c. Copyright 2012 Cengagc Learning .AIRights Reversed May notbecopied ,canned ,orduplicated .inwhole orinpar.Doctoelectronic rights.xxtic third pur.ycontent may bevuppreved rrom theeBook andtor eChaptcnnl .Editorial roiew h*> deemed Cutanysuppressed content does nottnaxrUXy alTcct theoverall learning experience .Ccttgagc [.cammerorntt theright 10remose additional conteatatanytime iisubseqjcnt rights restrictions require It426 C H A P T E R 10 Systems ofNonlinear Equations Use Broyden ’smethod tofindasolution tothefollowing nonlinear systems ,iterating until ||p(k)- p^loo-F(p<°>>-y(p<0,)(p(1)-p(0))](P(1)-p(0)y A,=y(p,0>)+iipin_pn| a.Show that A,(p)zwhenever (ph-p(0>)'z=0. Copyright 2012 Cenfa*cLcarni #*.AIRighb Rcicfved .May ncabecopied .icanacd .orAliened.»whole oempnn .Doc 10electronic itfhu .*wtcthird pur.yCOMCK may besuppreved riom theeBook amtar cCh deemed CutanyMpprcucd cement dee>notmaterial yalTccr theoverall Icamir*experience .Ccnitasc [.camonroerver theright lorerrxyve additional conteat*anytime ifwtoeqjcoi nght »rotrietionc require IL427 10.4 TheSteepest Descent Method Itcanbeshown thatifA_ lexists andx,yR",then (A+xy')~lexists ifandonly ify'A~1x^—l.Use thisresult toverify theSherman -Morrison formula :IfA1exists andy'A1x^-1,then (A+xy') exists ,and9.-l A'lxy'A 1+y,A-1x‘-l (A+xy')1=A1 10.4 TheSteepest Descent Method Theadvantage oftheNewton andquasi-Newton methods forsolving systems ofnonlinear equations istheir speed ofconvergence once asufficiently accurate approximation isknown . Aweakness ofthese methods isthatanaccurate initial approximation tothesolution is needed toensure convergence .Themethod ofSteepest Descent willgenerally converge only linearly tothesolution ,butitisglobal innature ,thatis,nearly anystarting value will give convergence .Asaconsequence ,itisoften used tofindsufficiently accurate starting approximations fortheNewton -based techniques . Themethod ofSteepest Descent determines alocal minimum foramultivariable func- tionoftheform g:R"-R.The method isvaluable quite apart from providing starting values forsolving nonlinear systems ,butwewillconsider only thisapplication . Theconnection between theminimization ofafunction from R"toRandthesolution ofasystem ofnonlinear equations isduetothefactthatasystem oftheform /l(*l.*2 *<)=0, /2(*l.*2 X„)=0,Thename fortheSteepest Descent method follows from the three-dimensional application of pointing inthesteepest downward direction . f n(X\,X2 X n)=0, hasasolution atx=(JCJ,*2,   .x„yprecisely when thefunction gfrom R"toRdefined by Xn)= .*n)]2g(x1,*2,.. » 1-1 hastheminimal value zero. Themethod ofSteepest Descent forfinding alocal minimum foranarbitrary function gfrom R"intoRcanbeintuitively described asfollows :  Evaluate gataninitial approximation p())=(pj0),p f\...,p<0))f.  Determine adirection from p(0)thatresults inadecrease inthevalue ofg.  Move anappropriate amount inthisdirection andcallthenewvalue p[).  Repeat thesteps with p(0)replaced byp11}. TheGradient ofaFunction Before describing howtochoose thecorrect direction andtheappropriate distance tomove inthisdirection ,weneed toreview some results from calculus .TheExtreme Value Theorem implies thatadifferentiable single -variable function canhave arelative minimum within Copyright 2012 Cengagc Learn in*.AIRight*Reversed Mayr*xbecopied.v.-aitned.o*implicated ,inwhole orinpar.Doctocjectronie rifhu.*wcthird pur.ycontent may besupplied rican theeBook and/orcChaptcnM .Editorial roiew h*> deemed CutanyMpprccscd content dce>notnuetlaXy afTcct theoverall learnire experience .Cette jpeLearn xiercsenn theright Mremove additional conceal atanytime i!vutoeqjrni right*rotrictiots require It.428 C H A P T E R 10 Systems ofNonlinear Equations The rootofgradient comes from theinterval only when thederivative iszero.Toextend thisresult tomultivariable functions , theLatin word gradi,meaning “towalk ”.Inthissense ,the gradient ofasurface istherateat which it“walks uphill ”.weneed thefollowing definition . Ifg:Rn-¥R,wedefine thegradient ofgatx=(*i,x2,..., Vg(x),by v*(x)=(S(x)’ The gradient foramultivariable function isanalogous tothederivative ofasingle variable function inthesense thatadifferentiable multivariable function canhave arelative minimum atxonly when thegradient atxisthezero vector. Thegradient hasanother important property connected with theminimization ofmul- tivariable functions .Suppose v=(uj,V2,...,vnYisavector inR”with ||v||2=1.The directional derivative ofgatxinthedirection ofvisdefined byS' d g *“’dx Dvg (x)=limi[g(x+h\)-g(x)]=v*Vg(x)=^^x)*d g i=l Thedirectional derivative ofgatxinthedirection ofvmeasures thechange inthevalue of thefunction grelative tothechange inthevariable inthedirection ofv. Astandard result from thecalculus ofmultivariable functions states thatthedirection thatproduces themaximum increase forthedirectional derivative occurs when vischosen inthedirection ofVg(x),provided thatVg(x)^0.Sothemaximum decrease will bein thedirection of—Vg(x).  Thedirection ofgreatest decrease inthevalue ofgatxisthedirection given by-Vg(x). SecFigure 10.2foranillustration when gisafunction oftwovariables . Figure 10.2 z Theobjective istoreduce g(x)toitsminimal value ofzero,sogiven theinitial approx - imation p(0),wechoose p'D_ p(0)_ QfVgCp '0*) (10.2) forsome constant a>0. Copyright 2012 Cc«£»fcLearn in*.AIR.(huReversed Mayr*xbecopied ,canned ,orduplicated.»whole ormpan.Doctoelectronic rifhu.vonte third pony content may besuppressed ftem theeBook and/orcCh deemed Cut artysuppressed content dees notimtetlaly affect theoverall teamireexperience .Cenitapc Learn xiprcsenn thenjht Mremove additional conceal atanytime i!suhvenjcni nphts restrictions require it429 10.4 TheSteepest Descent Method Theproblem now reduces tochoosing orsothatg(p!1})willbesignificantly lessthan g(p(0)).Todetermine anappropriate choice forthevalue or,weconsider thesingle -variable function *(«)=S(P<0)-aVg (p(0»)). Thevalue ofathatminimizes histhevalue needed forp=p(0)—aVg(p(0)). Finding aminimal value forhdirectly would require differentiating handthen solving aroot-finding problem todetermine thecritical points ofh.This procedure isgenerally too costly.Instead ,wechoose three numbers a\<0*2<«3that,wehope ,areclose towhere theminimum value ofh(a)occurs .Then weconstruct thequadratic polynomial P(x)that interpolates hatoq,«2»and 0*3.Wedefine ain[ct\,«3]sothatP(a)isaminimum in[a\,«3] anduseP(a)toapproximate theminimal value ofh(a).Then aisused todetermine the newiterate forapproximating theminimal value ofg: (0)-aVg (p(0>).(1)P'=p Since g(p,0))isavailable ,wefirstchoose a\=0tominimize thecomputation .Next a number 0*3isfound with h{a3)/1(0*1),then successive divisions of0*3by2areperformed and thevalue of**3isreassigned until /1(0*3) deemed Cutanysupprewed content doev notimtetlaly afTcct theoverall Ieamir .itexperience Ccnit jpeLearning roervev theright Mremove additional conceal atanytime i!vuhvajjcM nghtv rotrictions require It.430 C H A P T E R 10 Systems ofNonlinear Equations Solution Letg (xi,x2,x3)=[/i(x,,x2,x3)]2+[/2U1,x2,x3)]2+[/3U1,*2»X3)]2.Then =(2/,(X)^(X)+2/2(X)^(X)+2/3(X)^(X), V«(JT1,^2,*3)=Vg(x)3A:, 3AC, 3/, 3/2 3/32/,(x) (x)+2/2(x) (x)+2/3(x) (X).3*2 3X2 dx2 (x)j3/i 3/2 3/32/1(X)—(x)+2/2(x) (x)+2/3(X)9X3 9x3 9x3 =2J(x)'F(x). Forp0)=(0,0,0)',wehave 8(P(0))=/.(0,0,0)2+/2(0t0,0)2+/3(0,0,0)2 2 +(-81(0.01)+1.06)2+(^=111.975 , and Zo=l|Vg(p<0>)||2=l|2J(0)'F(0)||2=419.554 . Let 1z=-Vg(p(0>)=(-0.0214514 ,—0.0193062 ,0.999583 )'.zo With ai=0,wehave gi=g(pl0)-a\Z)=g(p<0))=111.975 .Wearbitrarily leta3=1 sothat (0)-a3z)=93.5649 . S3=s(p Because deemed Cutanyvuppicwed content doev notimtctlaly alTect theoverall learning experience .Ceng age[.cammgroentt theright 10remote additional conceal atanytime ifsubvoyjem nght >rotrictionv requite It431 10.4 TheSteepest Descent Method so P\a)=801.874 a-419.346 and P(a)=0when a=oro=0.522959 .Since g(p<0)-a0z)=2.32762 issmaller than g]and#3,weset p<'>=p<°>-a0z=p<0)-0.522959 Z=(0.0112182 ,0.0100964 ,-0.522741 )I and g(p(,))=2.32762 . Table 10.3contains theremainder oftheresults .Atruesolution isp=(0.5,0,-0.5235988 )', sop'2)would likely beadequate asaninitial approximation forNewton ’smethod or Broyden ’smethod .One ofthese quicker converging techniques would beappropriate atthisstage because 70iterations oftheSteepest Descent method arerequired tofind llp(*>-Plloo <0.01. Table 10.3k_(*)Pi P?>_ <*>P) 2 0.137860 0.266959 0.272734 0.308689 0.314308 0.324267-0.205453 0.00551102-0.00811751-0.0204026-0.0147046-0.00852549-0.522059-0.558494-0.522006-0.533112-0.520923-0.5284311.27406 1.06813 0.468309 0.381087 0.318837 0.2870243 4 5 6 7 EXERCISE SET 10.4 l. Use themethod ofSteepest Descent toapproximate asolution ofthefollowing nonlinear systems , iterating until||plA)—plt_,)||oc<0.05. 1Ax]-20x,+-xf+8=0 5x2+8=0a. 1-x\x$+2xi- 3*?-4 3*,xf-*,3-1=0 c.ln(xf+x\)—sin(xiX 2>=In2+ln;r e*i~*2+cos(xi*2)=0 sin(47rxijc 2)—2JC2 x\=0 (e2*1-e)4-Aex\-2ex\=0 Usetheresults inExercise 1andNewton ’smethod toapproximate thesolutions ofthenonlinear systems inExercise 1,iterating until||p(A)-p(i_ l>||oc<10~6.b. =0 d. (TT) 2. Copyright 2012 Cengagc Learning .AIRights Reversed May notbecopied ,canned ,orduplicated .inwhole orinpar.Doctoelectronic rights.xvtic third pur.ycontent may bevuppreved riom theeBook amtar cCh deemed Cutanysuppressed content does nottnaxrUXy alTcct theoverall learning experience .Collage [.cammereserve*theright*>rerrxyve additional conteatatanytime iisubseqjcnt right*restrictions require It432 CHAPTER 10 Systems ofNonlinear Equations 3. Use themethod ofSteepest Descent toapproximate asolution ofthefollowing nonlinear systems , iterating until \\p(k)-p(*_1)||oc<005. a.15*i+*2“4*3=13 *f+10*2_*3=11 x\-25*3=—22 C.*^-fx]x2—*1*3+6=0 exi+e**-x3=0 x\—2*1*3=410*i—2*|+*2—2*3—5=0 8*|+4*f-9=0 8*2*34"4=0b. *i4-cos(*i*2*3)-1=0 (1-*,),/4+*2+0.05*3-0.15 JC3-1=0 —x\—0.1*1+0.01*2+*3—1=0 Use theresults ofExercise 3andNewton ’smethod toapproximate thesolutions ofthenonlinear systems inExercise 3,iterating until||p|A>—p'*“,)||00<106. Use themethod ofSteepest Descent toapproximate minima forthefollowing functions ,iterating until flp(4)-pt*~,)||00<0.005 . a.g(xt,x2)=cos(x,4-*2)4-sin*,4-cos*2 b.g(*i,*2)=100(*f-*2)24-(1-*i)2 c.g(*i,*2,*3)=*2+2x\4-*2-2*,*2+2*i-2.5*2-*34-2 d.g(*j,*2,*3)=*44~2*44"3*44"1.01 a.Show thatthequadratic polynomial thatinterpolates thefunction h(a)=s(p,0)-aVg (p(0>»d. 4. 5. 6. ator=0,a2,anda3is P(a)=g(p(0))4-h\a4-/i3or(a-or2) where g(p<0)-a2z)-g(p0))ha2 g(p<0>—a3z)—g(p<0)—ar2z) h2-h i,and A3= h2=a3-a2 b.Show thattheonly critical point ofPoccurs atoro=0.5(or2—/11//13).«3 — 10.5 Homotopy andContinuation Methods Homotopy ,orcontinuation ,methods fornonlinear systems embed theproblem tobesolved within acollection ofproblems .Specifically ,tosolve aproblem oftheform F(x)=0, which hastheunknown solution p,weconsider afamily ofproblems described using a parameter kthatassumes values in[0,1].Aproblem with aknown solution x(0)corresponds tok=0,andtheproblem with theunknown solution x(l)=pcorresponds tok=1. Suppose x(0)isaninitial approximation tothesolution pofF(x)=0.Define G:[0,1]xR" R" by G(k,x)=*F(x)4-(1-k)[F(x)-F(x(0))]=F(x)4-(k-l)F(x(0)). Copyright 2012 Cengagc Learn in*.AIRights Reversed Mayr*xbecopied.scanned .ocimplicated ,inwhole orinpar.Doctocjectronie rights.some third pur.yCOMCK may besupplied rican theeBook and/orcChapccriM .Editorial review h*> deemed Cutanysuppressed content does nottnaxrUXy alTcct theoverall learning experience .('engage [.camonreserves theright 10remove additional eonteatatanytime ifsubsequent nghts restrictions require It